SECTION IV

MANUAL NO. 993-045925-001

TECHNICAL SERVICE INFORMATION for

MEMORYMOOG

MODEL 345

CAUTION

These servicing instructions are for use by qualified personnel only. To avoid risk of electric shock, do not perform any servicing other than that described in the Owner's Manual unless you are qualified to do so. Refer all servicing to qualified service personnel.

MOOG MUSIC INC. 2500 Walden Avenue, Buffalo, New York 14225

MOOG MUSIC p/a Waalhaven Zuid Zijde 48, 3068 HJ, Rotterdam, The Netherlands

These drawings and specifications are the property of Moog Music Inc., and shall not be reproduced or copied in whole or in part as the basis for manufacture or sale of the items.

> COPYRIGHT - 1982 MOOG MUSIC INC.

Dear Fellow Synthesist:

Since you have proceeded this far in your reading, you have already demonstrated a keen interest in at least four endeavors: music, electronics, computers and, of course, SYNTHESIS. This manual can provide you with added depth in this multi-faceted knowledge and improve your long-term synthesizer musicianship.

This is a preliminary service manual which will be available in final form during the first quarter of 1983, so if you or your service engineer have comments concerning the format or content, let us hear from you. Direct your suggestions or corrections to the attention of the Moog Service Department.

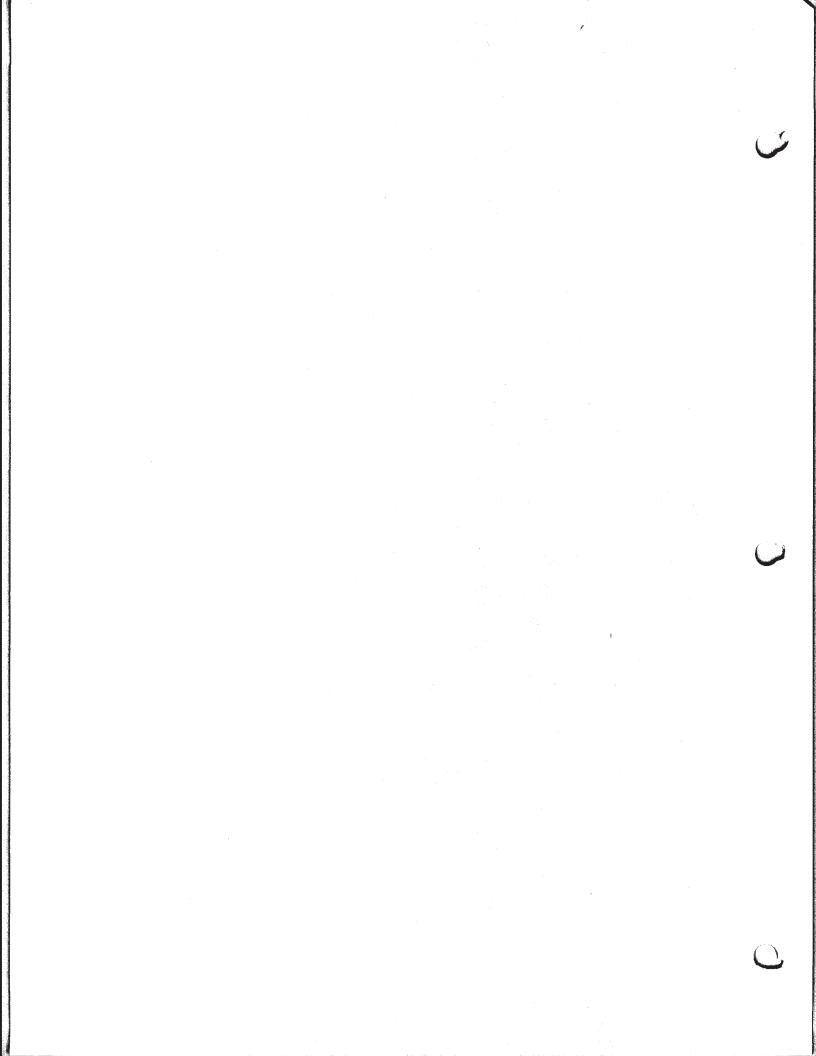
Have this manual handy along with the schematics (blueprints) included in the owner's packet, in the event your MEMORYMOOG requires service. Be sure to check the Modification section before proceeding with field repair or calibration & have your unit serviced at the nearest authorized Moog service center as shown on the list included in your owner's packet.

Read on!

Phone (716) 681-7200

MEMORYMOOG OWNER'S MANUAL ADDENDA

Pg. 6 - Under Section 1.9 (Arpeggiator), the following modes should be added:


- 7) Plays all notes simultaneously
- 8) Plays back notes in order they are played, first-to-last
- Plays back notes in order they are played, first-to-last (latched)

Ppg. 40, 41, 42 - The line drawings show connections being made to the side of the 1120 Footpedal Controller. The connections should be made to the front of the Controller, as shown in the photograph on Page 48.

Pg. 46 - The diagram labelled "Contoured Oscillator 3 Modulation" suggests that the Oscillator 3 amount control is used for contoured voice modulation. This is incorrect; for contoured voice modulation, turn up the Filter Contour pot (be sure the CONTOURED OSC 3 AMT switch is on).

VENTILATION CLEARANCE - The Memorymoog has a built-in cooling fan that exhausts hot air from the instrument. For optimum tuning stability, be sure that this fan is not obstructed in any way; i.e., do not operate the Memorymoog if it is sitting on deep-pile shag carpeting. Also, always make sure that the instrument is firmly seated on all four "feet"; if it rests on a board or surface that is too narrow, the board or surface may be flush against the fan outlet and heat may not be able to escape the instrument, resulting in tuning instability.

November 30, 1982

MEMORYMOOG SERVICE MANUAL

TABLE OF CONTENTS

INDED OF CONTENTS	
CIRCUIT DESCRIPTION	Page
Specifications	. 1
General Introduction	• 3
Circuitry Block Diagram	• 4
Power Supply	• 5
Digital Board Board #4	. 7
Demux Board Board #5	. 15
Display & Front Panel Controls . Boards #6 & 7	. 17
Voice Cards Board #1,A-F	. 18
Contour/Glide & External Synth . Boards #3 & 9	. 22
Common Analog Board Board #2	. 25
DISASSEMBLY	
Cabinet	. 29
Boards	. 29
Keyboard	. 30
REPAIR AND TROUBLESHOOTING GUIDE	
General	. 35
Connectors	. 36
Power Supply	. 37
Voice Cards	. 39
CALIBRATION PROCEDURES	. 43
SOFTWARE TUNING	. 43
STANDARD CALIBRATION	. 44
MODIFICATION	. 48
PARTS LISTS	. 49
SCHEMATICS	CLOSED
SPECIAL NOTE:	

* Indicates Input and/or Output is Active Low (BAR)

MEMORYMOOG SPECIFICATIONS AND FUNCTIONS

The Memorymoog is a versatile six-voice, programmable polyphonic synthesizer with the classic Moog sound, housed in an anodized aluminum cabinet trimmed with selected walnut.

All Memorymoog functions are under the control of a Z-80 micro-computer which continually monitors the soundpath, responding to all performer input through the keyboard, panel controls, foot pedals and system controller.

The front-panel settings are stored as a "program". The Memorymoog will remember 100 programs. These are stored and recalled by the system controller, which is used to access all special functions of the Memorymoog. In addition, 20 program chains - sets of 10 programs - can be stored and stepped through forward or back with footswitches for fast onstage voice changes.

Two programmable foot pedal inputs provide control of volume, pitch, filter cutoff frequency, modulation amount and sync sweep, allowing the performer to keep both hands on the keyboard. The routing and settings of these pedals are programmable.

Different keyboard modes may be selected through the system controller. The modes are: 1. CYCLIC - the first key played is sounded by voice A, the second key, voice B, etc. 2. CYCLIC WITH MEMORY: similar to #1 except that a repeated key will not be reassigned. 3. RESET: any single key will be assigned to voice A (this mode will Denave like a monophonic keyboard on individual lines). 4. RESET WITH MEMORY -similar to \$3, but with memory function described in \$2 described in #2.

In monophonic performance, the number of active voices (one to six) may be selected to be played in unison. The keyboard priority (low-note, high-note, or last-note-played) may also be selected.

Glide may be activated in either the or polyphonic modes of monophonic operation.

The Memorymoog operates, in a continuous edit state; setting of any control may be instantly changed by moving that control.

When editing, the alphanumeric display shows both the memorized value of the control and the edited value.

All information stored in the Memorymoog may be saved on a standard cassette for later re-use.

KEYBOARD

C-C, 61 keys (5 octaves)

VOICES

The Memorymoog is a 6-voice instrument. Each voice contains: OSCILLATORS 3 Audio oscillators - range: 16', 8', 4', 2'. (Range is extended to 32' with 3 Audio oscillators - range: 16* transpose switch in performance area). Waveforms available: variable pulse, sawtooth and triangular. Oscillators 2 & 3 have dual concentric frequency pots; center knob for fine tune (12 turns), outer knob for coarse tune. Sync Osc 2 to Osc 1. Osc 3 acts as an audio or modulation oscillator. Osc 3 rate: .2 Hz to 8 KHz. VOICE MODULATION Osc 3 signal or filter contour may be routed to Osc 1, 2, pulse width 1, 2 and/or filter. Filter contour can control amount of Osc 3 modulation effect. MIXER Individual level controls for each oscillator and digital pink noise source. MODULATION LFO frequency - .1 Hz to 100 Hz. Waveforms available: triangle, reverse sawtooth, sawtooth, square or sample & hold. Routing to Osc 1, 2, 3, pulse width 1, 2, 3 and/or filter. VOLTAGE CONTROLLED FILTER Moog 24 dB/octave filter. Filter keyboard tracking selectable 1/3, 2/3 or full. CONTOUR GENERATORS Two four-part (Attack, Decay, Sustain, Release) contour generators. Attack time: 10 seceonds maximum. Decay & Release time: 20 seconds maximum. Return-to-zero, unconditional contour and keyboard follow modes are selectable for the contours. FOOTPEDALS Two Moog 1120 footpedals can be connected. Pedal 1 controls pitch, volume & filter. Pedal 2 controls mod amount & Osc 2 pitch. Pedal assignment and sensitivity are stored as part of a program. GLIDE Type: Linear Active in all monophonic and polyphonic modes. Glide modes are dependent on keyboard assignment modes.

```
SYSTEM CONTROLLER CODES
  C0 - Sequentially flashing LED's - a
  service routine
Cl - Cassette Save
  C2 - Cassette Load
  C3 - Cassette Verify
  C4 - Defeats voices sequentially - a
       service routine
  C5 - Frequency center for Osc 2 & 3 to
       Osc 1 (zero beats)
  C6 - Tuning Calibration - defeats auto
       tune
  C7 - Auto assigned tuning (for
       servicing)
  C8 - Program enable and disable
  C9 - live front panel (programming)
  D0 - through D9 are program sequence
       codes
  A - advance program chain
  B - back step program chain
OUTPUTS
  Programmable volume for program level
  balancing. Master output volume control.
  Headphone output level.
REAR PANEL
  Balanced line (600 ohms) & high level
  (unbalanced 5K) outputs.
  Footpedal in 1 & 2.
  External synthesizer CV, gate and S-trig
  outputs (with range & scale trims).
Release, Hold, Program Advance and
  Program Back Step footswitch inputs.
  External Clock input (to arpeggiator).
  Cassette Interface.
POWER REQUIREMENTS
  Domestic: 120-127 volts 50/60 Hz
            200-254 volts 50/60 Hz
  Export:
POWER CONSUMPTION
  110 watts
DIMENSIONS & WEIGHT
  Net weight: 38 lbs. (17Kg)
  Overall size: 40" by 18-3/8" by 6-1/2"
  101.6 cm by 46.7 cm by 16.5 cm
```

GENERAL

The MEMORYMOOG is a state-of-the-art six voice programmable synthesizer with a five octave keyboard designed in the tradition of the MINIMOOG.

SOUND

The design of the MEMORYMOOG is very similar to the MINI with three oscillators, two contour generators, MOOG 24db per octave filter and a voltage controlled amplifier. In addition, it includes other features to further improve the sound generation possibilities. To the oscillators is added sync and variable pulse width. The contour generators were expanded to four parts with three modes of operation, including a mode where the attack, decay and release times track the keyboard for better simulation of acoustical instruments like the piano.

The voice card is further enhanced by two powerful modulation systems: LFO modulation and Voice modulation. The LFO modulator contains its own wide range oscillator and routing switches. The amount of modulation is controlled by the modulation wheel, a foot pedal or a fixed amount may be programmed. This modulation section controls all voices simultaneously and can be used to control pitch, pulse width or filter cutoff for vibrato and tremolo.

Voice modulation works on each individual voice card. The modulation signal for each voice comes from its own oscillator three and/or the filter contour. This generates independent modulation for each voice card. Voice modulation can also control pitch, pulse width and filter cutoff for chorus effects, sync sweeps and other musical effects.

PERFORMANCE ORIENTATION

Programming is made easier by first making almost everything programmable except for tune, final volume and headphone volume. Secondly, a full complement of knobs and switches have LED indicators. These first two features allow set-up of your personal programs just like a non-programmable monophonic synthesizer. Next, there are 64 locations where these programs can be stored. If 64 is not enough, included is a cassette interface so programs can be stored on an inexpensive audio cassette deck providing almost unlimited storage. In addition to the above, a two-digit distry tells what program is currently in use while a second eight-character alphanumeric display keeps the player informed of the instrument status. For example, it tells when the instrument is ready to play (after a short warm-up), when the autotune cycle is complete or when a loaded cassette is verified. For program selection, one need only punch in a two-digit number on a keypad. This gives simple, reliable and fast program selection.

The MEMORYMOOG has 20 program sequence registers. In these registers one can load up to ten program numbers in any order and during performance sequence the programs with a foot switch. Lastly are programmable inputs for voltage foot pedals like the MOOG 1120. These foot pedals allow control of pitch, volume, modulation amount and filter cutoff.

ARPEGGIATOR

Unlike conventional arpeggiators that are limited to playing notes up and/or down the keyboard, the arpeggiator in the MEMORYMOOG is more like a micro sequencer in that it arpeggiates notes in the order depressed. The arpeggiator will then play them forward or forward and backward. This gives a variety of musical patterns limited only by imagination. The notes can be "latched" so the arpeggio will continue to play after key release. Notes in the pattern can be replaced in real time adding new notes from the keyboard. The keyboard over a five octave range.

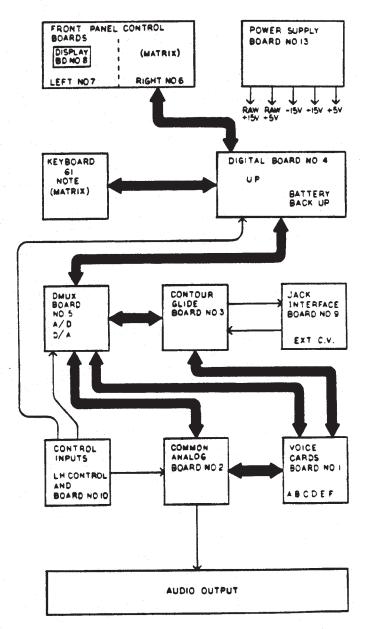
The arpeggiation rate is set by the LFO modulation oscillator and is therefore programmable. In addition, the modulation oscillator is reset when the first note on the keyboard is played to keep the arpeggiator in sync with the music.

The internal clock is supplemented by an external clock input for syncing the arpeggiator with an external device. The internal clock works fine for most applications until playing an arpeggio against something like a rhythm box. Then a problem arises because both have independent clocks. Even with careful adjustment of one against the other, a small error will still exist that will cause the two to slowly drift apart destroying timing. The external clock input gets around this problem since the clock output of the rhythm box drives the arpeggiator. The two systems then will work off the same time base and, therefore, remain in sync.

CIRCUITRY

The MEMORYMOOG is a six voice fully programmable synthesizer in which all voicing parameters are processed and stored digitally. Interface with the synthesizer circuitry (VOICE CARDS) is accomplished with digital to analog conversion of this data and transmission to the appropriate circuit element via control inputs from the front and rear panel switches, potentiometers and keyboard. These functions are controlled by a 280 microprocessor or CPU on the DIGITAL board in response to program information stored in the system ROM. Refer to the accompanying block diagram.

All continuously variable functions are voltage controlled and all switching functions are accomplished with electronic switching. Data for control of continuously variable functions is processed and stored in the system RAM in digital form, converted to analog information by the D/A converter resulting in serial current control data which is multiplexed for conversion to control voltages on the demultiplexer (DMUX) board. All switching inputs are either TTL compatable or are level translated to interface directly with the DIGITAL board.


The DMUX board provides triggers for the CONTOUR/GLIDE board, 18 output drives for the COMMON ANALOG board which are then bussed to the VOICE CARDS, and in addition, decodes front panel analog potentiometer settings into digital information using software generated successive approximations.

The CONTOUR/GLIDE board generates polyphonic and monophonic glide, a loudness contour and two filter contours.

Particularly note that in the MEMORYMOOG, certain circuit elements are CRITICAL to the performance and operation of the circuit and should be checked for calibration and operation before ANY other adjustment or repair is attempted. In order of priority, here is a list of parameters to be checked and adjusted only if required:

1. The +15V, $-15V \pm +5V$ power supplies on the POWER SUPPLY board are measured on DMUX board. (See power supply section).

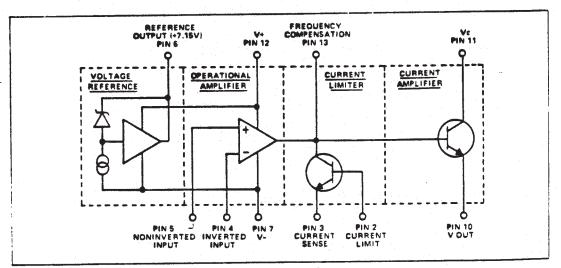
2. The +10V DAC reference supply (DAC ZERO and FULL SCALE) on the DMUX board.

BLOCK DIAGRAM

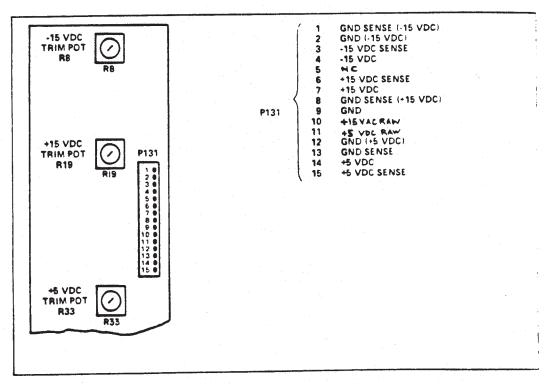
POWER SUPPLY

The power supply includes a printed circuit board assembly, fan, heat sink, split primary transformer and a bottom mounted plate that converts 100/120 to 220/240 Volts. The plates include a connector and all the appropriate fuses including secondary fuses. Regulation is accomplished with 723 regulators, MPSU05 drivers and a series of TIP41 pass transistors. There is a raw 5V tap which feeds the FRONT PANEL LEDs and a tap of the +15V supply for the power shutdown circuit on the DIGITAL board. The power supply has remote sense lines which are wired to the DMUX board. Each of the three independent output windings of T1 is applied to a full wave bridge rectifier and regulator circuit to provide regulated -15, +15 and +5 VDC outputs. The output of each bridge rectifier is filtered by an electrolytic capacitor having a bleeder resistor connected in parallel to remove any residual charge when power is removed from the unit.

The heart of each regulator section is comprised of a 723 integrated circuit consisting of four basic sections: a temperature compensated voltage reference, operational amplifier, current limiter and current amplifier. The voltage reference section of the +15 and +5 VDC supplies produces a stable +7.15 +/- 0.36 VDC output at pin 6 which may be used at that level or divided down. The operational amplifier section is used as a linear amplifier to compare a direct or divided down reference voltage applied to pin 5 with a divided down sample of the power supply output voltage applied to pin 4. The current amplifier section amplifies the small current obtained from the output of the operational amplifier section and is used as an emitter follower to drive external transistors from pin 10. The current limiter section, when connected to external circuitry, acts to limit or reduce the current available to the current amplifier section should a power supply current overload occur.


The output from each bridge rectifier and filter is a considerably higher voltage than the regulated output voltage. Transistors Q1, Q3, Q5 and Q6 are emitter followers acting as electronically variable resistors controlled by the current applied to their bases. Transistors Q2, Q4 and Q7 operate as current amplifiers driving Q1, Q3, Q5 and Q6. The +7.15 VDC voltage reference from pin 6 of the 723 IC is applied to pin 5 (through a divider resistor on the +5 VDC supply) which is the noninverting input to the operational amplifier section of the IC. A voltage divider between the positive sensing terminal and the negative sensing terminal applies a voltage proportional to the output voltage into the inverting input (pin 4) of the operational amplifier to be compared with the reference voltage applied to pin 5. If the output voltage is too high, the voltage at pin 4 will be higher than the voltage at pin 5. This

reduces the current into the base of the driver transistor in turn reducing the current into the base of the pass transistor causing the output voltage to drop to the correct level. If the output voltage is too low the opposite action occurs.


The two types of overcurrent protection provided include a constant current overload protection used on the + and -15 volt output. On the + and -15 volt outputs, resistors R6 and R17 are in series with the output. The current limit transistor in the 723 IC is connected to this resistor so that if the voltage drop of this resistor exceeds 0.6 volt due to excessive output current, this transistor conducts to prevent any further increase in the output current. When this point is reached, the output voltage will start to drop. The foldback overload protection used in the +5 volt section of the power supply operates by sensing both voltage and current. An overload is first sensed by the combined drop across the base-emitter junction of Q5 and the drop across R31. When the combined drop exceeds approximately 1.2 volts, the current limit transistor in the IC starts to conduct causing the output voltage to begin to drop. When this happens, the voltage drop across the divider becomes less causing the current limit to conduct even more. As a result of this regenerative action, the short circuited current of the power supply is much less than the rated full load current.

Variable resistors R8, R19 and R33 allow or individual adjustment of each output voltage. Resistors R10, R21 and R35 and diodes CR6 and CR13 prevent the outputs from rising to excessive levels should one of the sensing leads accidentally become disconnected. Diodes CR7, CR14 and CR20 across each output protect its output from accidental application of a reversed voltage to its output terminals. Capacitors C3, C6 and C9 provide a low dynamic impedance for each output.

Refer to the accompanying power supply diagrams and schematics.

VOLTAGE REGULATOR INTEGRATED CIRCUIT (723 DIP PACKAGE)

.

POWER SUPPLY ASSEMBLY ADJUSTMENT CONTROLS AND OUTPUTS

DIGITAL BOARD

The CPU is at the left center of the DIGITAL BOARD schematic along with three program EPROMs and room for four 2K x 8 RAMs of which. used. These are CMOS battery three are backed-up RAMs. As each instruction is fetched from memory, it is placed in the instruction register and decoded. The control sections perform this function and then generate and supply all of the control signals necessary to READ or WRITE data from or to the registers, control the arithmetic logic unit and provide all required external control signals.

The Z80 CPU contains 208 bits of R/W (READ/WRITE) memory that are accessible to the programmer which is configured into eighteen 8 bit registers and four 16 bit registers. All 280 registers are implemented using static RAM. The registers include two sets of six general purpose registers that may be used individually as 8 bit registers or in pairs as 16 bit registers. There are also two sets of accumulator and flag registers.

A PROGRAM COUNTER (PC) is a special purpose register that holds the 16 bit address of current instruction being fetched from memory. The PC is automatically incremented after its contents have been transferred to the address lines. When a program jump occurs the new value is automatically placed into PC, overriding the incrementer. The STACK POINTER (SP), another special purpose resistor, holds the 16 bit address of the current top of a stack located anywhere in external RAM memory. The external stack memory is organized as a last in first out (LIFO) file. Data can be pushed onto the stack from specific CPU registers or popped off the stack into specific CPU registers through the execution of PUSH and POP instructions. The data popped of PUSH and POP instructions. The data popped from the stack is always the last data pushed onto it. Two independent special purpose INDEX REGISTERS (IX & IY) hold a 16 bit base address that is used in indexed addressing modes. In this mode, an index register is used as a base point to a region in memory from which data is to be stored or retrieved. An additional byte is included in the instructions to specify a displacement from this base. The INTERRUPT PAGE ADDRESS REGISTER (I) is not used in the MEMORYMOOG and the MEMORY REFRESH REGISTER is also not used in the MEMORYMOOG.

The CPU includes two 8 bit ACCUMULATORS and associated 8 bit FLAG registers. The ACCUMULATOR holds the results of 8 bit arithmetic or logical operations while the FLAG register indicates specific conditions for 8 bit or 16 bit operations, such as indicating whether or not the result of an operation is equal to zero.

There are two matched sets of GENERAL PURPOSE REGISTERS, each set containing six 8 bit registers that may be used individually, as 8 bit registers or 16 bit register pairs. One set is called BC, DE, and HL while the complementary or alternate set is called BC', DE', and HL' and finally there is the ARITHMETIC LOGIC UNIT which has 8 bit ARITHMETIC and LOGICAL INSTRUCTIONS of the CPU which are executed in the ALU. Internally the ALU communicates with the registers and the external data bus and the internal bus.

Listed below are the 280 CPU pin descriptions which are the functional designations for the pinout of the CPU. Refer to the accompanying figure for the corresponding pin number.

A0-A15 (address bus)

Tri-state output, active high. The address provides the address for memory (up to U bytes), data exchanges and for I/O device data exchanges. I/O addressing uses the 8 lower address bits to allow the user to directly select up to 256 input or 256 output ports. A0 is the least significant address bit.

D0-D7 (data bus)

Tri-state input/output, active high. The data bus is used for data exchange with memory and I/O devices.

MREQ* (memory request)

Tri-state output, active low. The memory request signal indicates that the address bus holds a valid address for a memory READ or WRITE operation.

IORQ* (input/output request) Tri-state output, active low. The IORO* signal indicates that the lower half of the address bus holds a valid address for an I/O READ or WRITE operation.

RD* (memory read) Tri-state output, active low. RD* indicates that the CPU wants to READ data from memory or an I/O device.

WR* (memory write) Tri-state output, active low. WR* indicates that the CPU data bus holds valid data to be stored in the addressed memory or I/O devic

WAIT* (wait)

Input, active low. WAIT* indicates to the CPU that the addressed memory or I/O devices are not ready for data transfer. The CPU continues to enter wait states for as long as this signal is active. This signal allows memory or I/O devices of any speed to be synchronized to the CPU.

INT* (interrupt request)

Input, active low. The Interrupt Request signal is generated by I/O devices. A request will be honored at the end of the current instruction fetch if the internal software controlled interrupt enable flip-flop (IFF) is enabled.

Ml* (Machine Cycle One)

Output, Active low. Ml* indicates that the current machine cycle occurs with IORQ* to indicate an interrupt acknowledge cycle.

RESET* Input, active low. RESET* forces the program counter to zero and initializes the CPU.

I (clock) Single phase TTL level clock.

CLOCK CIRCUITRY Clock inverter Ul4, crystal Y1, resistors) Ez Rll capacitors C8 and C6 form a 4 mega cz oscillator that drive flip-flop Ul6. The flip-flop is connected as a divide by two

circuit to insure that the waveform will be a square wave at the required frequency of two megahertz. Resistor R12 provides the necessary pull up for the processor. The RESET circuit consists of diode CR1, resistor R9, capacitor C5 and inverters U15 and U14. When power is initially applied, the output of Ul4 will be at ground which holds the CPU in a RESET* state and capacitor C5 will begin to charge through resistor R9. When the voltage on C5 reaches the threshold of CMOS Schmitt trigger U15 (in approximately 1.5 sec), the output of removing the RESET* will go high Ul 4 condition. The CPU will now run the power up software. CRl insures that momentary power outages will dump the charge on C5 and revert to the RESET* state. A Z80 CTC counter/timer is used in conjunction with the Z80 CPU to realtime functions and future provide interfacing capabilities. It's operation will be discussed in detail throughout the text.

DMUX WAIT STATE GENERATOR

All data written to the Digital to Analog Converter (DAC) is done with OUTPUT instructions. To allow the DAC time to settle and the sample and hold capacitors time to charge up, WAIT states are introduced into all OUTPUT instructions below 80 hex. The WAIT state generator consists of U31, a dual four-bit counter cascaded to form an eight bit counter, a D-type flip-flop U33 and some associated gates.

As a starting point, assume the next instruction the CPU will execute is an OUTPUT instruction, then the logic states of the WAIT state circuitry will be as follows: The RESET pins, Rl and R2 of U31 will be at a logical 1, which is the RESET state & therefore, all the U31 outputs will be 0. The flip-flop U33, Q* output will be a logical 0 and the WAIT* line at a logical one, which is off.

When the OUTPUT instruction is executed, the CPU IORQ* line goes low, the A7 line will be low and the M1 line remains high. This will cause the U13 pin 3 output to go low, removing the RESET from counter U31. Pin 8 of U12 will be low sending its output high, which is inverted by U12, turning the WAIT* line on or low. Also, flip-flop U33 is clocked via inverter U14, sending its Q* output high. The action of flip-flop U33's output going high disables address decoder U34, forcing all of its outputs high, disabling all DMUX channels.

In this state, the OUTPUT instruction will be extended until the WAIT* line returns high.

Since the RESET has been removed from U31, it is now free to be clocked by the system clock. On the first rising edge of the system clock after the IORQ* has gone low, U31's Q0 output, pin 3, will go high clocking the 8-bit address latch U32 and clocking the DAC latch on the DMUX board via the D CLK line of connector S43 pin 9.

So far we have turned on the WAIT* line, inhibited all DMUX channels (on the DMUX board) and latched both address and data busses.

Continuing the OUTPUT instruction cycle three

system clock cycles later, the U31 Q2 output, pin 5, goes high which, via inverter U21, applies a SET to flip-flop U33 forcing its Q* output low. This enables the address decoder U34, enabling the selected 4051 IC on the DMUX board. The appropriate sample and hold capacitor, also on the DMUX board, will now charge up (or discharge) to it's new output value and the channel will remain on until the next OUTPUT instruction is executed

The instruction ends after 12 more system clock cycles, when the Q0 output, pin 11, of U31 goes high sending the WAIT* line high (off) and the RESET condition is again applied to U31.

Note that address decoder U35, which is used to drive the multiplexer (MUX), operates similar to the DMUX address decoder U34 but does not use the turn-on delay from U33. Since the multiplexer does not multiplex the DAC output but rather front panel potentiometer wiper voltages, there is no settling time associated with it. Also, note that the latched A6 line from the U32 latch output does not drive U35. Therefore, it's decoded output will "fold over" on 40 hex boundaries instead of the 80 hex boundaries for the DMUX outputs. In other words, port 00 hex can also be addressed by addressing 40H.

FRONT PANEL AND KEYBOARD CIRCUITS In the central portion of the schematic are ICs U17-20 which are 74LS138 address decoders. These handle the various memory mapped ports for the FRONT PANEL controls and switches using straight forward address decoding.

The keyboard circuit is in the upper right hand corner of the schematic and uses latches U26, U27 and U28. U26 and U27 are CMOS hex tri-state buffers divided into a section which uses six buffers and a section which uses two buffers each with a separate enable. All six buffers of U27 are used in conjunction with two buffers of U26 to form an eight bit buffer. This eight bit buffer and latch U28 are connected to the keyboard which is wired in a column and row matrix with a diode in series with each key.

Keyboard decoding is accomplished by WRITING all "zeros" to latch U28 and then reading the U26/U27 buffer output. Since the inputs (keyboard side) of the buffers have pull-up resistors, R28-R35, no keys down will result in all "ones" being READ. If this is the case, no further decoding is necesary, however, if other than all "ones" is READ at least one key is down and the keyboard must be fully decoded. This is done by WRITING data to latch U28 that will set one selected row low while all other rows are high and then reading the column data at buffer U26/U27. Whenever data other than all "ones" is READ from the buffer, in the row where the "zero" was WRITTEN, this indicates that one or more keys are down, therefore the column must be decoded. Columns are decoded by shifting the byte that was READ from the buffer. After the first row has been decoded the next row (starting from DO and moving towards 07) is set to "zero" and all other rows will be high or "ones". This operation continues until all 8 rows have been decoded. If there are several notes played polyphonically, the diodes across each note prevent shorting of columns to columns and rows to rows. The priority structure scans down and across to find closures and scans progressively from memory, decoding up to a maximum of ten notes.

BATTERY BACKUP

RAM battery backup is accomplished by a 78MO5C 5-volt regulator that is used to generate a 5.6 volt supply for the RAMS. A 5.6 volt supply voltage is obtained by using a diode drop in the common leg of the regulator to ground which biases the common to +0.6V. The diode in series with the output drops it back down so at the junction of the three diodes, CR4, CR5 and CR6, the VRAM supply ends up at approximately 5 volts again under normal circumstances. A lithium battery voltage source provided through diode CR6 supplies power to the RAMs when the VCC supply drops. When power is lost, the RAMs can be damaged if the input voltages to the RAMs are still at or near 5 volts while the VRAM supply has dropped to the 2 or 3 volt battery level. To prevent this, the diode CR8, resistor R23 and capacitor Cl4 on the input, hold the non-battery VRAM supply up longer than the VCC. Thereby, VRAM only drops to the battery voltage after VCC has dropped below it.

POWER SHUT-DOWN CIRCUIT

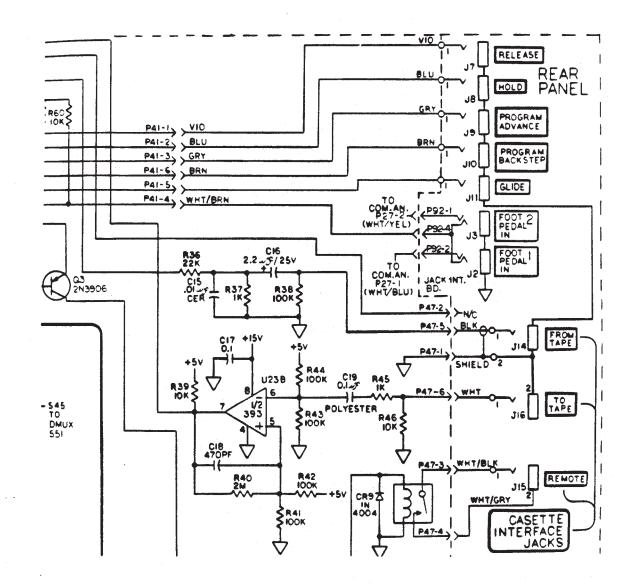
Just below the battery backup circuit is the power shut-down circuit, consisting of U23A, Ql and associated components. CR2 is connected, through harnessing, to the power supply transformer secondary ahead of the main filter capacitor on the +15V supply. The raw AC voltage is half wave rectified by CR2, filtered by Cll, R18 and R19 and clamped from going above +5V by CR3. This results in a half-wave rectified waveform clipped at +5V with a rise time following the line voltage and an extended fall time. The fall time is extended enough so that the voltage level under normal circumstances will not fall below the threshold of +1V, set by R20 and R21, on pin 2 of U23A. When power does go down, even briefly, the lack of input to CR2 will cause pin 3 of U23A to fall below the threshold - sending its output to zero, dumping the charge on Cl0 and turning on Ql, which disables the RAMS via gate pack U22. The filter capacitors in the power supply are large enough to hold the supplies up for 15-20 milliseconds. Restoring power will allow the U23A output to go high again, but since it has an open collector output, it's only pull-up is R15, therefore, Q1 will remain on until C10 can charge up. This delay insures that the power supplies will be stabilized before the RAMS are enabled.

CTC COUNTER/TIMER

The Z80 CTC contains four eight-bit, programmable down-counters. It is I/O mapped between 80H-83H and used for the front panel LED multiplexing, AUTOTUNE and CASSETTE I/O routines, generally all the real time functions. One channel is used as a counter that is programmed to generate interrupts at every 1.25 millisecond intervals. These interrupts suspend the main system program loop to service the front panel DISPLAY and LED multiplexer routine.

INTERFACE JACKS

The FOOT SWITCH and FOOT PEDAL interface buffer is U30 at the central right nd portion of the schematic. This CMOS ex tri-state buffer handles the FOOT PEDAL single bit inputs such that the processor can treat them as memory locations. It monitors J7, J8, J9 and J10, the RELEASE, HOLD, PROGRAM ADVANCE and PROGRAM BACKSTEP jacks and the two FOOT PEDAL controller input jacks J2 and J3. Pullup resistors set U30 high such that a switch closure to ground READS in either a zero or one for a specific bit. The CASSETTE I/O jacks J14, J15 and J16 are mapped similarly. The single bit input from J2 and J3 is used to prevent a possible operational trap that would occur if the FOOT PEDAL VOLUME was programmed ON from the FRONT PANEL and no FOOT PEDAL was plugged into either J2 or J3, causing the instrument output volume to be zero. Nothing plugged into J2 or J3 will cause the system to disregard the FRONT PANEL programming and turn the FOOT PEDAL VOLUME off. The MODULATION OSCILLATOR'S SQUARE WAVE output is routed through the normally closed switch on jack Jll level translator Q2. The MODULATION to OSCILLATOR is applied to the data buss by buffer U26 and used as a time base for the ARPEGGIATOR. The MODULATION OSCILLATOR can be replaced as a time base by supplying an external clock to Jll.

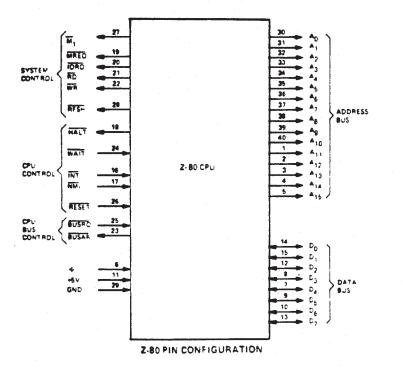

The CASSETTE OUTPUT uses the Q0 bit output from the keyboard circuit latch U28. This would seem to create a conflict between two circuits but since the CASSETTE he **)**/0 routines' suspend all other operations during their execution, this problem does not occur. The cassette transport on/off control circuit consists of flip-flop U33, Q3 and the relay. WRITING a "one" to bit D0 at the address mapped by U18, latches a "zero" at the U33 output, turns off Q2 and energizes the relay, turning on the tape transport. Similarly, writing a "zero" will turn the tape transport off. Diode CR9 shunts the back EMF developed by the relay coils, collapsing the field during turn-off which could otherwise damage Q2. The cassette output from the tape recorder is input via R45 and Cl9 to the inverting input of comparator U23B which is biased at +2.5V by resistor R43 and R44. The threshold on the non-inverting input of U23B is +2.5V or set by R41 and R42 with +/-120 mV of hysteresis determined by R40. Cassette data from the output of U23B is applied via buffer U26 to the data buss where it can be READ by the CPU. One of the CTC channels is used in conjunction with the cassette load routine to provide the time measurement necessary to determine "zero" or "one" data in.

AUTOTUNE

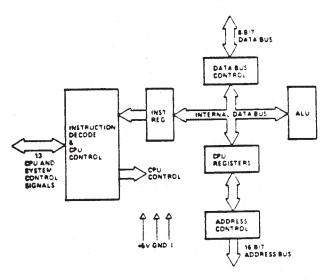
The AUTOTUNE circuit uses two channels of the CTC chip, flip-flop Ul6 and one section each of Ul3 and Ul5. By selective voice triggering and manipulating oscillator levels, any one of the eighteen audio oscillators can be ar ed to the pin 1 input of Schmitt trigger 5. After each oscillator's uncompensated frequency has been measured, the AUTOTUNE compensation value is calculated. It is then output via the DAC and DMUX to the corresponding oscillator summing node. One channel of the CTC is programmed as a "timer" and the other as a "counter". Channel three is the "timer" and is clocked by the 2mHz system clock, through a divide by 16 circuit which prescales it in the CTC, yielding an internal clock period of 8uSec. Timing begins when the CTC receives a positive edge on its pin 20 the CLK/TRG3 input. Channel two is the "counter" and counts negative edges at its pin 21 CLK/TRG2 input. Using these two channels results in a method of measuring "time"and "counting" oscillator cycles. Flip-flop Ul6 and gate Ul3 allow the timer and counter channels to be started synchronously by the falling edge of oscillator under test. The pin 10 SET input of U16 is connected to memory mapped latch U28 so that the flip-flop can be held in its SET state until the AUTOTUNE routine is ready to make a frequency measurement. Upon removal of the SET from the flip-flop the next falling edge of the output goes to a "one", starting the channel three CTC timer and enabling gate U13, the oscillator will now appear at the pin 6 U13 output to be counted by the channel two CTC counter.

FUTURE EXPANSION

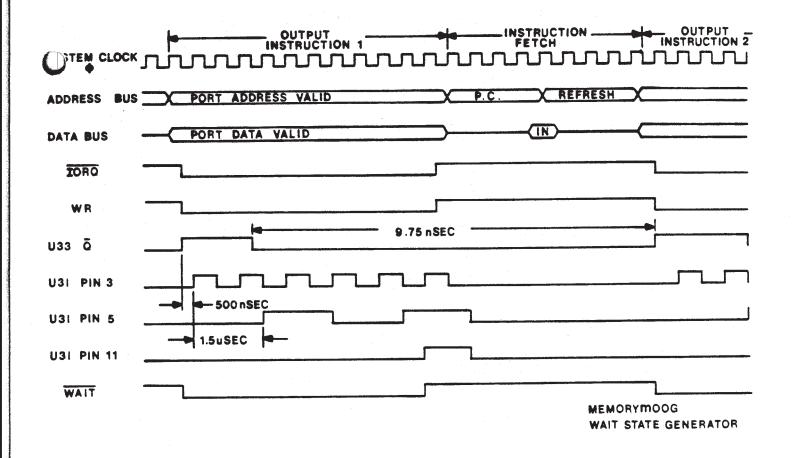
At the center of the schematic is an extra 40 pin DIP socket in which extra ROM, RAM or other hardware could be added in the future. These ports could latch data into the DAC for an appropriate use.

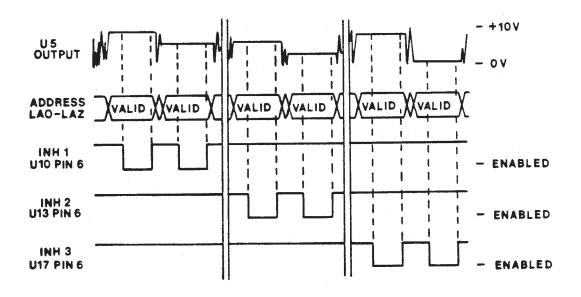

Page 10

Z-80 CPU PIN DESCRIPTION

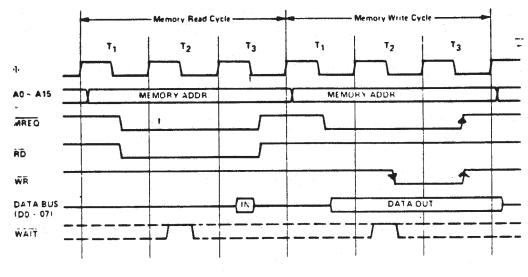

•

The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package. The I/O pins are shown and the function of each is described below.

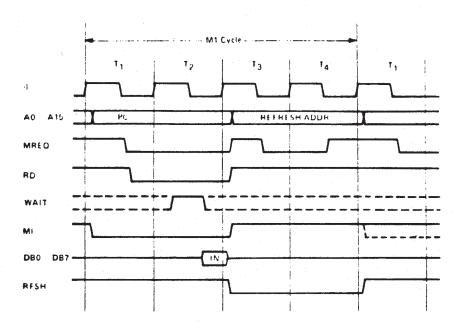


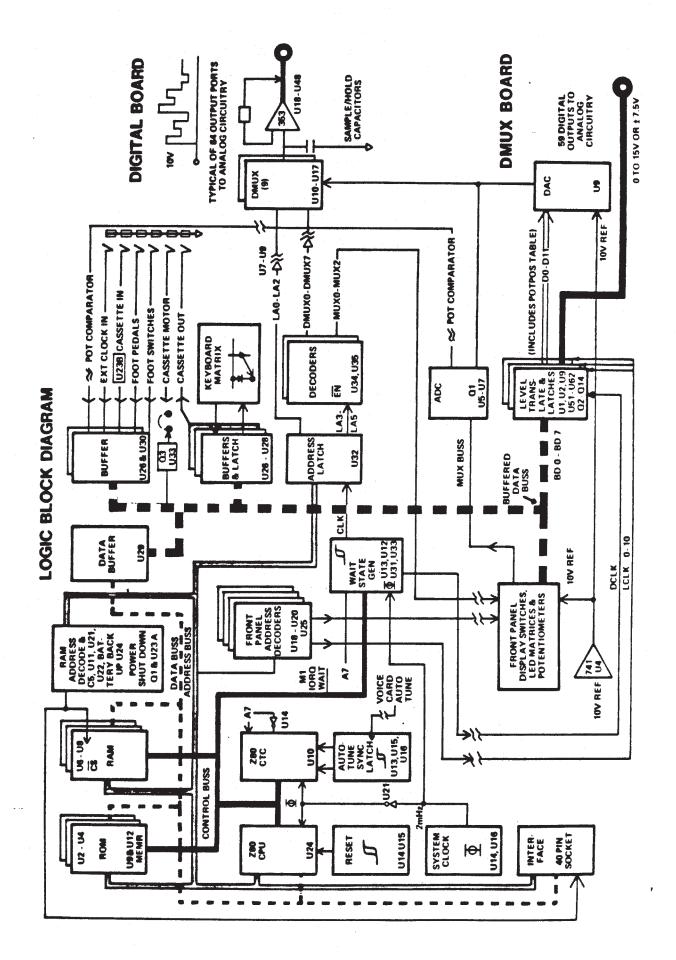


Z-80 CPU ARCHITECTURE



2-80 CPU BLOCK DIAGRAM




DEMUX

INSTRUCTION OP CODE FETCH

()

 \bigcirc

DEMULTIPLEXER BOARD #5

The purpose of the demultiplexer is to convert the serial current pulses from the DIGITAL board to parallel voltage outputs to drive the analog circuitry.

Analog data, specifically from the DAC, consists of serial current pulses with a variable magnitude of 0 to 3.32 mA. These current pulses are converted to a serial voltage pulse stream with a directly proportional magnitude between 0 and 10V, by U5. Capacitor C5 damps U5 to minimize overshoot and ringing. Also note the DAC will constantly convert its buffered data lines to analog current, sending it to the DEMULTIPLEXER. Valid information is separated by inhibiting the 4051 demultiplexer during times when invalid data is present at the DAC output.

Referring to left hand portion of the DMUX BOARD schematic, U10 through U17 are digitally controlled analog switches, each of which function as an 8 pole single throw electronic switch. One of these devices is selected using the inhibit inputs DMUX0 through DMUX7 on pin 6 which is controlled from the DMUX driver circuit on the DIGITAL board via level translators U7 through U9. Each device is driven by address lines LA0, LA1 & LA2 from the CPU on the DIGITAL BOARD, via the level translators of U7. These three address lines will select which of the 4051 eight outputs is connected to the input.

By using the three address and eight inhibit lines a connection is made from the output of U5 to 1 of the 64 sample and hold buffers. Since the CPU synchronizes the address changes with the serial analog output of the DAC, analog data will be channeled via the DEMULTIPLEXER to it's respective port.

OP AMPS U18-U48 are connected as buffers and capacitors C7-70 form the sample & hold ports. The timing of the demultiplex operation is accomplished by: addressing an input port using LAO-LA2; data output through the DAC and U2B; a 4uS enable delay; one of the demultiplexer chips outputing a specific voltage; a 12 microseconds "on" time; and the operation ending with the next port addressed and repeating the operation. Before any of the demultiplexer chips are turned "on", the 4uS delay allows time for the DAC to make its conversion and for some settling time for U2B. The 12 microseconds "on" period allows sufficient time to charge the holding capacitors for worst case conditions.

When a demultiplexer port is accessed, the corresponding capacitor on the output will charge (or discharge) to the voltage that is output during the 12 uS "on" time. When the output is turned off, the capacitor holds the charge voltage until it is refreshed by the next "scan" through the demultiplexer routine. Since the input impedance of the buffer is extremely high, very little leakage or charge drain off from the capacitor will occur. Therefore, it will stay virtually at the voltage it was initially charged to between "scans".

SAMPLE/HOLD CIRCUIT

The series of 4051 demultiplexer IC's act like a giant commutator, in which the LAO, LAI and LA2 lower order latched address lines are bussed together with specific chip selec. In accomplished by the appropriate inhibit lit. From the earlier text, remember that on the DIGITAL BOARD, the --address decoding is accomplished on the three higher order address lines - A4, A5 and A6, resulting in the DMUX0-DMUX7 lines. Since the 4051s are operated between ground and +15V, their address lines are level translated from TTL to +15V by open collector buffers U7, U8 and U9. Each 4051 is followed by a 353 BIFET op amp buffer such as U18A and a sample/hold capacitor such as C7. For neatness, only two circuit configurations are shown on the top and bottom of the schematic and the remaining 62 are noted only in rectangular boxes. Below the DAC is U6B, a 393 comparator and a 2N3906 transistor Q1 which form a hysteresis circuit.

10V DAC REFERENCE

Looking at the upper left hand portion of the schematic, the DMUX BOARD has a 10 volt temperature compensated DAC reference voltage source. It is used for all the analog linear data and consists of zener diode CR1 and 741 buffer U4.

DAC CIRCUITRY

All digital to analog and analog to digital conversion is done using the 12-bit DAC U3, 8-bit data latch U2, 6-bit data latch U1, current to voltage converter U5 and successive approximation comparator U6A. C2 and C4 are supply decoupling capacitors, C3 sets the the frequency compensation, R10 provides to ADJUSTMENT and R8 sets the FULL SCALE level of 10.000V, with the upper eight bits ON and the lower four bits OFF. Data requiring digital to analog conversion is done simply by OUTPUTTING the data to its corresponding port address where U3 makes the conversion.

A/D CIRCUITRY

Analog to digital conversion of a front panel potentiometers(pots) requires that a software generated successive approximation routine be used. Since the DMUX and the MUX (multiplexer) run synchronously, data can be written to the DAC with all DMUX channels off, while addressing the multiplexer at the same time (except that the MUX addresses "fold over" at 40M, as described earlier in the DIGITAL board section). This is true because any OUTPUT instruction between addresses 40H and 80H will WRITE data to the DAC, but all DMUX 4051s will be off. Since the multiplexer addresses "fold over", a pot with an address in the OH to 40H range will be put on the MUX buss. The MUX buss comes in from the DMUX board on P516-1 and for the moment disregarding CR2, CR3 and R18-R20, is applied to the non-inverting input of comparator U6A. The DAC is connected to the inverting input of U6A and the U6A output is connected via P517-1 back to the DIGITAL board where its status can be READ by the CPU. An A/D conversion is accomplished by OUTPUTTING A/D conversion is accomplished by oblice the approximations to the D/A converter with the address of the pot to be converted plus 40H. address of the pot to be converted plus 40H. For example, if a pot with an address of 10H was to be converted, the first approximation would be to OUTPUT 80H, which is about +5V, to port 50H (10H + 40H). The +5V approximation appears on pin 2 of U6A via the D/A converter and the pot value on pin 3 of U6A via the multiplexer on the FRONT PANEL board. By now, reading the U6A comparator output, the CPU knows whether the voltage on the pot wiper is higher or lower than the +5V approximation. Assuming the pot voltage was higher than +5V, the next approximation would be 7.5V. This approximation routine continues with successively smaller steps - each, half the previous step, until the pot value has been determined.

POTENTIOMETER EDITING

Pot editing is accomplished by detecting pot movement. When a pot is moved, its output replaces the stored program data from memory. In order to detect pot movement, all pot positions must be known at all times. When the unit is turned on it runs a power-up software routine that converts all the analog pot voltages to digital data and records this data in a position table called POTPOS. This POTPOS table is constantly updated in order to maintain current pot position information. The software for the main system loop software contains a routine that systematically outputs the POTPOS table data to the DAC while addressing the multiplexer, to apply the corresponding pot value to the MUX buss. The comparison is done by comparator U6A with hysteresis provided by Q1, U6B, CR2, CR3 and R17-R21. Since, in the case of a pot that has not been moved, both voltages on the inputs of U6A will be nearly equal, some threshold hysteresis is required. By WRITING a zero to the U2 latch Q4, output Q2 will be turned on pulling R17 to +15V. CR2 will be forward biased and will therefore clamp the junction of R17 and R18 to about +0.6V above the MUX buss potential. This will yield a constant drop across R18 of about 0.6V over the normal range of 0V to +10V of the MUX buss. R18 and R19 form a simple divider with the voltage appearing on the U6A input at about 50mV higher than the MUX buss input. This forms the positive hysteresis threshold to detect pot movement while in a similar manner U6B, CR3 and R20 generate the negative limit. If a pot is found to be outside these limits when compared to its latest position, information from the POTPOS table is determined to have been moved and put into EDIT.

LEVEL TRANSLATION

Numerous switching functions of the analog synthesizer must be controlled and their data is latched by hex latches U51, U52 and U54-U61. Since the analog data of these switch controls have various levels, their on/off control lines switch from +7.5V to -7.5V, 0V to +15V or as TTL levels. Buffer U50 and transistors Q2-Q7 translate six bits of the buffered data buss to the +7.5V to -7.5V level and the 0V to +15V level. Buffer U53 and Q8-Q12 translate the CLOCK LINE to the +7.5Vto -7.5V level.

READING RECOMMENDATIONS

The following books are recommended for additional information on micropeocessors like the 280. These are general references not related to MEMORYMOOG but contain important system concepts.

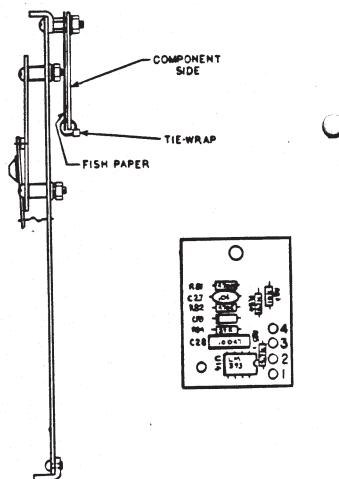
TRS-80 MICROCOMPUTER TECHNICAL REFERENCE HANDBOOK, Catalog 26-2103, 1978.

PROGRAMMING THE 280 by Rodney Zaks, 1980 2nd Edition from SYBEX CZ80, Printing 10587654321 1SBNO-89588-047-4. FRONT PANEL CONTROL BOARDS #6 & 7 Left and right side control board (L.S.C. &

R.S.C.) switch cicuitry is almost identical to the keyboard decoder column/row matrix discussed earlier. A 74LS377 latch is on the left side of the L.S.C. board and a 4503 buffer on the left side of the R.S.C. board, connected through connector S75. Thus each board shares common rows. The only thing different compared to the keyboard matrix, are the diodes for each contact - since there is no need to detect multiple switch closures. The FRONT PANEL matrix has two-key rollover, whereby pressing more than two keys ends up shorting buss lines together which decode as an erroneous switch action that was not actually taken. It outputs all "zeros" on the latch and READS all "ones" on the buffer with no switches closed. If it finds anything other than "ones", it scans the latch outputs for the particular row, READS it to the buffer and then proceeds. It READS two bytes of information, first READING the left side, then the right side.

DISPLAYS

Front panel LEDs are also matrixed in a column and row structure. The row data is latched by board which drives U2 Ul on the L.S.C. and U3, also on the L.S.C., which are Darlington driver arrays that provide the necessary current gain. All discrete LEDs on both control boards, along with the eight character drivers for the alphanumeric display, are driven from the U2 and U3 row driver. Column data for the L.S.C. board discrete LEDs is latched by U8 with Q15-Q18 providing the necessary current gain. Column data for the fourteen segments of the alphanumeric display is latched by U4 and U5 with Q1-Q14 providing current gain. The discrete LEDs on the R.S.C. board column data is latched by U2, on the R.S.C., with Q1-Q4 providing current gain. All the above described latches are memory mapped (meaning they are WRITTEN to as if they were memory) by address decoders on the DIGITAL board described in the DIGITAL board section. The LEDs (including the alphanumeric display) are multiplexed at a one eighth duty cycle with a 100Hz loop rate. This timing is determined by interrupts generated by the CTC on the DIGITAL board as described earlier. Only one row will be on (an output from U2 or U3 low) at any time, while from a table in memory, the corresponding column data (which has been stored there previously) is obtained and WRITTEN to the column latches U8, U4 and U5 on the L.S.C. and U2 on the R.S.C.


The two digit program display consists of a simple 7447 seven segment decoder, 74LS378 latch and two MPSU55 drive transistors. The software routine is similar to the LEDs except that there are only two drives, with the tens and the units digits alternating on each interval pot. A small additional board has been added to early MEMORYMOOG versions to the L.S.C. control board utilizing a 74LS273 in the Ul position which deselects the eight character display and LEDs in the event of a power-down situation. This avoids possible LED damage due to the application of a constant voltage to the LEDs which are normally multiplexed. The 74LS273 has a COMMON CLEAR

input which deselects the LEDs if a low voltage condition exists.

All pots are connected between the analog ground and the plus 10 volts which is driven from the 10 volt reference source generate in the DMUX BOARD. The drive to all the pots is in parallel and addressed from the same latched and buffered lines as developed on the DIGITAL board.

6-VOLT DISPLAY REGULATORS

There is a series of 6 volt regulators on the lower right corner of L.S.C. schematic which supplies all the lights. The 5 volt supply is not used because of the diode drops from the Darlington 2704s which have a saturation voltage of about one volt, the 2N3906 PNP transistors and the two volt drop across each LED would provide little voltage across the current control resistors R74, R75 and R76. Therefore, the 6 volt regulators are powered by the RAW 5 volt supply (provides approximately 12 volts) which averages an 800 milliamp draw. The regulated 6 volts is divided up in a seemingly haphazard fashion but this in fact balances the current throughout the FRONT PANEL.

VOICE CARDS BOARD #1 A THROUGH F

THE OSCILLATORS

Starting at the upper left hand corner of the schematic is OSCILLATOR ONE consisting of a 3340 VCO which outputs TRIANGLE, SAWTOOTH and variable width rectangular pulse waveforms. Refer also to the accompanying VOICE CARD block diagram. Since loading of the TRIANGLE and SAWTOOTH outputs can effect the oscillator frequency slightly, high value base resistors are used. Each one of the outputs feed a 4016 switch and a 3360 VCA. All the waveforms are summable such that SAWTOOTH, TRIANGLE and rectangular pulse waveforms are available at the same time. The variable width rectangular PULSE waveform is established by the control signals coming from the COMMON ANALOG board where the pulse width for all voices is set.

for PULSE WIDTH is a provision There MODULATION and also VOICE MODULATION on each VOICE CARD with OSCILLATOR THREE used as the modulation oscillator. All oscillator signals are summed into a 3360 VCA which is controlled by the AMOUNT CONTROL programmed from a DMUX board DAC amount. Following the 3360 everything is summed into a TL072 Ul2A. At high volume settings, the signal is clipped in the TL072 for a desirable sounding "distortion effect". The output from the summer goes into Q3, a 2N3904, which is bussed to the AUTOTUNE circuit. Since six VOICE CARDS are bussed together, there is a need for a way to select a particular VOICE CARD and OSCILLATOR. To accomplish this, the collector of Q3 is tied to the FILTER CONTOUR for each VOICE CARD, thereby providing the VOICE CARD selection. Then by turning on the AMOUNT CONTROL for a particular OSCILLATOR and obtaining an independent contour from the CONTOUR/GLIDE board, a specific OSCILLATOR on a particular VOICE CARD can be selected.

The selection process applies a voltage on R131 which allows Q3 to turn on and using the rectangular pulse waveform from the OSCILLATORS, a pulse is obtained. It is coupled to CR1 and sent out to the AUTOTUNE buss to the DIGITAL board. The U12A sums the OSCILLATORS with a NOISE buss from the COMMON ANALOG board. One NOISE source generates the NOISE for all VOICE CARDS and is routed into the filter.

THE VCF

The VCF filter is a 24dB/octave patented Moog filter and it uses an IT122 monolithic matched transistor pair at the top and bottom of the filter ladder to cut down on voltage offsets and improve the current control signal rejection.

All the outputs of the OSCILLATORS and the NOISE source are coupled to the base of Ql1(2) via C26. Ql1 (1 and 2) convert the input signal to a differential signal current in the ladder. The collector, capacitor C31, and the next set of emitters Q9 and 10 form a 1 pole current controlled low pass filter. The cutoff frequency of the filter is directly proportional to the standing current in each leg of the ladder. The four stages in the ladder add up to a four pole low pass filter. The filter ladder is controlled by from an exponential current source U current Ul4 that also uses an IT122. The control current to the filter comes from many sources, such as: the FILTER CONTOUR of the CONTOUR/GLIDE board, the KEYBOARD VOLTAGE, COMMON ANALOG control signals which sum the FILTER CUTOFF, FREQUENCY MODULATION and OSCILLATOR 3 MODULATION. All are summed together, scaled with R167 and offset adjusted with the RANGE adjust R164 and applied to the exponentiator that drives the VCF. The filter signal is obtained differentially by a 353 BIFET OP AMP U20A and U20B. The 353 has a gain factor of approximately 4, which brings the signal up to about 100 millivolts, when the filter is all the way up. That signal has enough drive to obtain distortion in U22, the 3080 OTA, for a "fat" overdrive sound. The distortion is severe enough to alter a triangle waveform into a sinewave at the output with the LEVEL controls up and the VCF "open" all the way. The offset is cancelled with VCA TRIM R140 which takes out any "thumping sounds".

Next, the signal is applied to a 3080 OTA, the EMPHASIS amplifier U21, where it is attenuated with R147, R148 and R149. It is attenuated because distortion is wanted in the final output VCA but NOT in the EMPHASIS circuit as it creates undesirable sound effects. The signal, in turn, drives the inverting input of Qll to generate the EMPHASIS. The total phase shift of the filter is equal to 180 degrees at the cutoff frequency of the filter and this signal is injected into the minus input of the filter, resulting in positive feedback. This establishes a resonent peak in the filter response at the cutoff frequency. The height of the peak depends on the setting of the EMPHASIS control. At full emphasis the filter will oscillate producing a sine wave. EMPHASIS trim R153 sets the oscillation threshold and EMPHASIS BALANCE trim R151 cancels any voltage offset of U121.

The EMPHASIS control line comes from the COMMON ANALOG board, where all lines are bussed together such that one line controls all VOICE CARDS. The audio output from the 3080, U22, is fedback to the COMMON ANALOG board where it is summed with the other five VOICE CARDS.

OSCILLATOR SYNCHRONIZATION (SYNC)

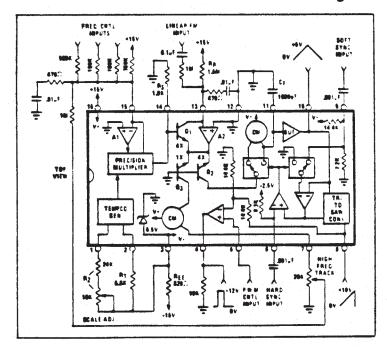
OSCILLATOR TWO is identical to OSCILLATOR ONE except for the SYNC capability. The SAWTOOTH output from OSCILLATOR 1 is applied through U3D, a 4016 switch to OSCILLATOR 2. When U3D is ON, it is differentiated from a narrow pulse which turns Ql on and effectively shorts out the TRIANGLE output for about 100 microseconds. This discharges capacitor Cl2, the timing capacitor for OSCILLATOR 2, resulting in a complex SYNC waveform where OSCILLATOR 1 is free running and OSCILLATOR 2 is synchronized to OSCILLATOR 1. The fundamental frequency of OSCILLATOR 2 is now "locked" to OSCILLATOR 1.

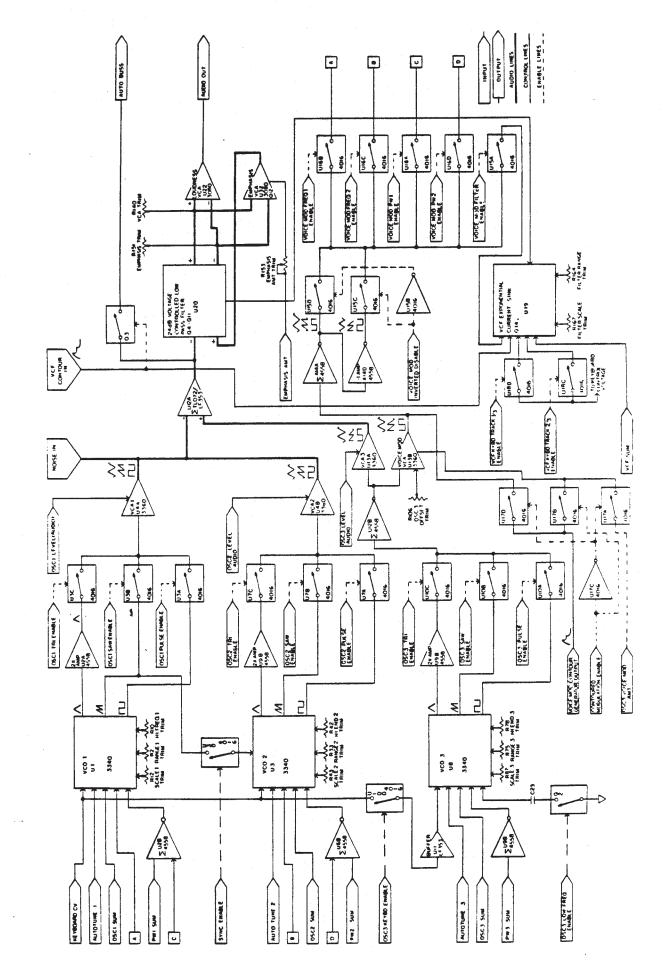
CEM 3340

Voltage Controlled Oscillator

The CEM 3340 and CEM 3345 are completely self contained, precision voltage controlled oscillators, featuring both exponential and linear control scales and up to four buffered output waveforms . triangle, sawtooth, square, and pulse with voltage controllable pulse width. Full temperature compensation makes these VCOs extremely stable, and eliminates the need for a temperature compensation resistor. The highly accurate exponential and linear control inputs are virtual ground. summing nodes, allowing multiple control voltages to be mixed within the device itself.

Also included is provision for hard and soft synchronization of the frequency, and an output for easy adjustment of high frequency tracking. Special care in the design ensures oscillation start-up under any power-on sequence and supply conditions.


Although a low voltage process has been used to reduce die size, cost, and leakage currents, an on-chip 6.5 volt zene: diode allows the device to operate off ±15 volt supplies, as well as +15,-5 volt supplies.


Voltage Between V _{CC} and V _{EE} Pins	+24V,-0.5V	
Voltage Between V _{CC} and Ground Pins	+18V, -0.5V	
Voltage Between VEE and Ground Pins	-6.0V,+0.5V	
Voltage Between Frequency Control Pin or Reference Current Pin and Ground Pin	±6 .0V	
Voltage Between Multiplier Output Pin and Ground Pin	+6.0V, -1V	
Current through Any Pin	±40mA	
Storage Temperature Range	-55°C to +150°C	
Operating Temperature Range	-25°C to +75°C	

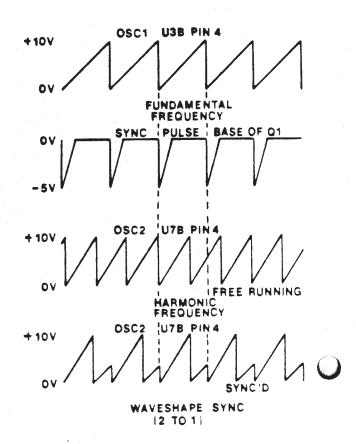
-

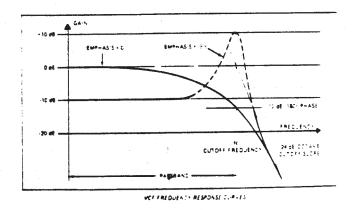
CEM 3340 Circuit Block and Connection Diagram

Absolute Maximum Ratings

()

 \bigcirc


 \bigcirc


VOICE MODULATION OSCILLATOR 3 also has a few differences from OSCILLATOR 1 in that the KEYBOARD VOLTAGE can be disconnected through the 4016 switch Ul0 and instead used as a modulation source. The modulation is only about one hertz, however, driving the 3340 VCO's with a control voltage input of such a low level causes the TRIANGLE waveform to be unsymetrical. Therefore, Q2 is used as a low frequency switch. With the low frequency switch on, Q2 is turned on and places a .033uf capacitor, C23, in parallel with the .00luf capacitor C22. This drops the frequency approximately 32 times or about five octaves. Since a DC output is needed from OSCILLATOR 3 for modulation, the three waveforms are summed by a TL072, U12B, and applied to two 3360 VCAs, Ul3A and Ul3B. Ul3A is used for establishing the level which controls the audio going into the summer and VCA for VOICE MODULATION when Ul3B is the OSCILLATOR 3 is used as a modulation source. bleedthrough TO prevent through the 4016 gates, the 3360, final VCA drive, transmission is shut off by the software. In that way, turning off the WAVEFORM switches allows no bleedthrough because the 3360 is completely off. Again, U13B is the VCA for the VOICE MODULATION and its output is fed into inverter Al4A and another inverter, Al4B, resulting in an inverted and a non-inverted output. These two waveforms are made available with another modulation source, the FILTER CONTOUR VCA, from the CONTOUR/GLIDE board, providing either straight or inverted contours. Therefore, all standard and reverse waveforms are available which can be coupled through the various 4016 switches to inputs controlling OSCILLATOR FREQUENCY, PULSE WIDTH or FILTER CONTOUR.

Since everything is located on the VOICE CARD or at least associated with individual VOICE phenomenon is called VOICE CARDS, this MODULATION, which is "independent" for every VOICE CARD. It means that a selected TRIANGLE WAVEFORM can be turned on for OSCILLATOR 3, on particular VOICE CARD and can have completely different, all independent, PULSE WIDTHS and FREQUENCIES. Similarly, the FILTER CONTOUR can be activated on a voice by voice basis capable of creating a sweeping effect of the OSCILLATORS. It is also possible to take the FILTER CONTOUR, turn the VCA all the way up and use that to control the VCA for OSCILLATOR 3. Then using the FILTER CONTOUR to ATTACK time would produce adjust a slow delayed modulation on a VOICE CARD by VOICE CARD basis.

-5 VOLT REGULATOR

The 3340 VCO's need to operate at +15V and at less than -7.5V, because they use a low voltage process. U23, a three terminal 79L05 -5Volt regulator, at the central right portion of the schematic, powers these chips for the negative rail. Operation then is at +15V and -5V.

CONTOUR/GLIDE BOARD

POLYPHONIC GLIDE

The DMUX board generates six independent pitches for each of the VOICE CARDS. To add polyphonic glide to each voice, in the upper left-hand corner of the schematic is an input line labeled POLYGLIDE. It is basically . . linear glide circuit which uses a 3360 VCA. The signal for each one of the VOICE CARDS comes in on lines S32-2 through 9 and is divided down with .01% matched resistors to obtain a precise 50% reduction. These lines are applied to a 4558 which is connected as a comparitor, the output of which drives the 3360 VCA The 3260 is a connected in the state of the sta 3360 VCA. The 3360 is a current-in current-out transconductance multiplier with the current set by R5. The current out is equal to the current in times the control voltage on pin 3. The maximum gain is obtained when pin 3 is at +2 volts. For example, starting from zero volts at S32-9, then applying +10 volts, 5 volts would appear at the input of the 4558 which would drive the output on pin 1 high providing a positive drive current to the 3360. This would, in turn, generate another output current on pin 2 which is proportional to the control voltage on pin 3. Cl is charged with the current source yielding a linear RAMP voltage which Ql will follow until the voltage on the source of Ql equals 5 volts. At 5 volts, the 4558 output will go to zero, stop the charging current and hold it there, controlling the GLIDE time. The higher the control voltage on the 3360, the higher the output current, the faster 5 volts is reached. Therefore, the larger the control voltage on pin 3 of the 3360, the faster the GLIDE time.

The POLYGLIDE amount is bussed to all the GLIDE circuits and each pair of RANGE trimmer outputs are set for the maximum GLIDE time. The control of the dual 3360s is made by applying the same voltage to both pins 3 and 12 of each device which are the exponential inputs (the 3360 has its own internal exponentiator). Thus, POLYPHONIC GLIDE means that each individual VOICE will glide from the last note played on the keyboard.

MONOPHONIC GLIDE & EXTERNAL SYNTH (BOARD #9) There is also a separate MONOPHONIC GLIDE output. Whereas six VOICE CARDS will not precisely track no matter how accurately they are adjusted, in POLYPHONIC GLIDE it doesn't matter because they move independently as played. But playing all six VOICE CARDS with MONOPHONIC GLIDE means they must all glide together. In the POLYPHONIC mode all the 3360's are turned ON and the MONOPHONIC GLIDE is turned OFF by setting it to the minimum. In the MONOPHONIC mode, the six 3360's are turned OFF and the MONOPHONIC GLIDE is turned ON. The GLIDE output is coupled through the TRANSPOSE circuit and goes back into the MASTER SUMMER on the COMMON ANALOG board so it will affect all the VOICE CARDS. It has a GLIDE RANGE trimmer but the second half of the 3360 is not connected. Also, this MONOPHONIC OUTPUT drives the small **#9** board on the MEMORYMOOG back panel where two inverters, UIA and UlB, provide the EXTERNAL SYNTHESIZER CONTROL VOLTAGE (C/V) OUTPUT. SCALE and RANGE trims are accessible through the rear panel for adjustment of the MEMORYMOOG. The MONOPHONIC EXTERNAL SYNTHESIZER C/V OUTPUT tracks the low, high or last note depressed on the keyboard, depending on what is programmed. The control voltage output from the MONOPHONIC GLIDE circuit is summed in with the TRANSPOSE circuit.

TRANSPOSE

The TRANSPOSE circuit operates in a MONOPHONIC, POLYPHONIC and TRANSPOSER HOLD mode. In the HOLD MODE the MEMORYMOOG remembers what chordal notes were played last and will play those same three notes transposed based on the next note played. At the lower left hand corner of the schematic is the circuitry which buffers the TRANSPOSE signal consisting of U7B and associated OFFSET and SCALING trims R53 and R286.

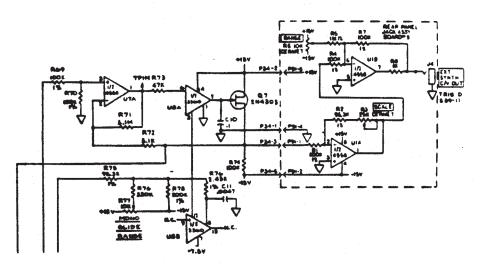
ADSR CONTOUR CIRCUITRY

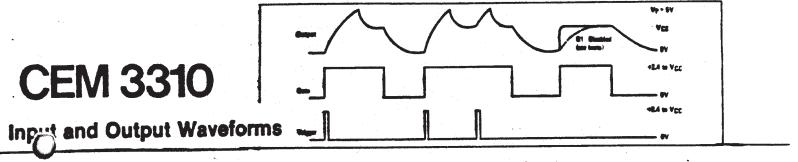
The contour lines enter from the DMUX board at the upper left hand portion of the schematic where the ATTACK, DECAY and RELEASE are buffered and applied to the 3310 Contour Generator. The usual ADSR contour includes an ATTACK, two holds and a RELEASE, but if a second note is played the contour would start back up from whatever DECAY or RELEASE setting it subsided to and reach its ATTACK setting more rapidly than is normal. This is not a desirable condition for the rearticulation of chords, therefore turning ON the RETURN TO ZERO FRONT PANEL switch causes the Contour Generator to short to zero, thus providing a rearticulation of the entire ATTACK phase of the chord. In the UNCONDITIONAL CONTOUR mode, once a trigger is established, the contour will continue & the entire ATTACK phase automatically will proceed into the RELEASE phase (if a note is not held down). In the KEYBOARD FOLLOW mode, the control voltage from the individual VOICE CARDS is used to reduce the ATTACK, DECAY and RELEASE times as notes are played up the keyboard. It is like a piano in which a note played on the bottom lasts a long time, while a note played at the top lasts only a short time. The keyboard follows or simulates that accoustic property with control voltages and as the keyboard is played with higher pitches, with the KEYBOARD FOLLOW switch ON, the DECAY, ATTACK and RELEASE get progressively shorter. There is also a RELEASE SWITCH which when OFF, the contour drops to zero immediately following the ATTACK, DECAY and SUSTAIN phases. When it is ON, the contour fades away at the rate set by the RELEASE potentiometers.

LOUDNESS ENVELOPE GENERATOR CIRCUITRY All the contours are generated by a series of

six 3310 Envelope Generated by a series of six 3310 Envelope Generators. There are five control voltage inputs for the ENVELOPE GENERATORS: ATTACK, DECAY, SUSTAIN and RELEASE and attack out. The 3310 has its own current mirrors, comparitor and exponential current sources. Therefore, by changing the voltage on pin 16 of U17, it changes the charge time during the ATTACK phase, thereby creating a voltage controlled Envelope Generator. Considering the 3310 as a straightforward Envelope Generator, every time a key is depressed on the MEMORYMOOG, the keyboard logic decodes which note is on and which VOICE CARD it is on. Thus, pressing a key would result in one of trigger inputs A-F actuating. If TRIGGER A is on, for example, the trigger is coupled through the 74LS32 Ul6A to the input and is differentiated by C24 and applied to the 3310 trigger input. This starts the ATTACK phase.

Without a trigger, the Envelope Generator will not start but once the gate is on, U17 operates as a standard Envelope Generator. When the ATTACK phase reaches the maximum ATTACK level, the comparitor inside goes into a DECAY phase which proceeds to the SUSTAIN level. The DECAY rate is set by the control voltage on pin 13 and the SUSTAIN level is set by the control voltage on pin 12. The exponential input is just like a typical oscillator input operating at approximately 18 millivolts per octave/time. The longest attack time is when U13B is at zero. The more negative this input becomes, the shorter the ATTACK. That time is cut in half for every 18 millivolt decrease.


The SUSTAIN holds for as long as the gate is on. When the gate goes off, the VCA RELEASE phase starts. If the RELEASE switch is ON it will decay at the rate set by the RELEASE control voltage from the DMUX output. If the RELEASE switch is turned OFF, the computer tells the DMUX output to go to maximum which yields the fastest decay time. Ul8A is a 353 acting as a buffer for the sample/hold capacitor C27. The output of the 353 is fedback into the 3310 and this feedback loop creates exponential-type responses. The Envelope Generator is set by resistor R113 for the longest desired ATTACK time and all the Envelope Generators are similarly matched. The VCA output then has specific wires fed to individual VOICE CARDS.

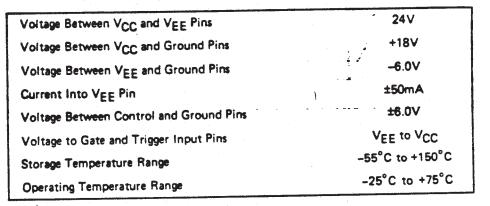

FILTER CONTOURS

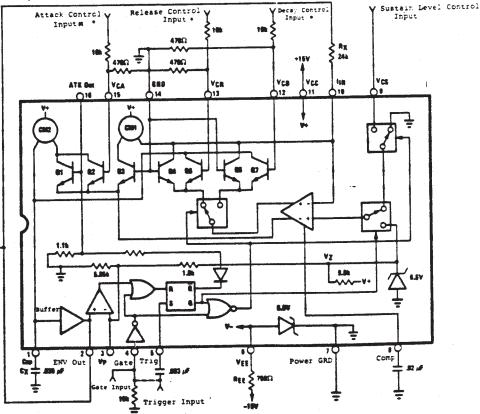
The FILTER Envelope Generator is configured like the LOUDNESS Contour Generator, except that there are two VCA's: one for the FILTER CONTOUR AMOUNT control and the second for VOICE MODULATION. VOICE MODULATION is fed to each individual VOICE CARD and is buffered.

Looking back at the CONTOUR INPUTS, the UNCONDITIONAL ATTACK phase input is fed to a 393 U14A through a 74LS08 U15C. Whenever a trigger is received on any Envelope Generator during the ATTACK phase, pin 16 will drop slightly negative to about -1 volt. That ()1 turn the output of the 393 on and couply **a**t through the 74LS08 which is ANDED with the UNCONDITIONAL ATTACK This trigger is basically on and operating and the 74LS08 keeps this 74LS32 OR gate on. In other words, when a key is pressed down, U15 turns on and turns the 74LS32 on which holds the trigger on. As soon as it ends the ATTACK phase, it jumps positive again, turns off and eliminates the trigger. If a note is still held down, a trigger will still exist but if the key is just "tapped", the ATTACK will begin and once completed it will go to the RELEASE phase.

The RETURN TO ZERO is accomplished with Q8 and Q9. The trigger input is differentiated by C25 and R116 and applied to the base of these transistors such that every time there is a trigger, it momentarily turns on the trigger, it momentarily transistors and shorts C27 and C31. This means it will momentarily bring the contour down to ground. For the KEYBOARD FOLLOW, a bank of 4016s connects to each one of the CONTOUR GLIDE outputs. They are inverted and applied to the 3310 reference, pin 14, from which all the ATTACK, DECAY and RELEASE times are referenced. Therefore, changing the KEYBOARD VOLTAGE changes the reference voltage which, in turn, changes the apparent ATTACK, DECAY and RELEASE voltages which affects the time rate. Each one of the DMUX outputs is inverted for the ATTACK, DECAY and RELEASE time and is output to the VOICE CARDS on threecables.

Voltage Controlled Envelope Generator


The CEM3310 is a self-contained, precision ADSR type of envelope generator intended for electronic music and other sound generation applications. Attack, decay and release times are exponentially voltage controllable over a wide range, and the sustain level is linearly voltage controllable from 0 to 100% of the peak voltage. A unique design approach allows for a 10,000 times improvement in control voltage rejection over conventional designs. In addition, much care has been given to the accuracy, repeatability and tracking of the parameters from unit to unit without external trimming. The times are to a first order determined only by the external resistor and capacitor and constant of phylics, KT/q. Wide tolerance monolithic resistors are not used to set up the time constants or the control scale. Finally, all four control inputs are isolated from the rest of the circuitry so that the control pins of tracking units may be simply tied together. Although a low voltage process has been used to lower the cost and lower the leakage currents, an internal 6.5 volt Zener diode allows the chip to be powered by \pm 15 volts supplies, as well as +15, -5 volt supplies.



Õ

- Zere te -5V Varies the Times from 2mS te 20S
- Zere to +5V Varies the Sustain Lovel from 0 to 100%

Absolute Maximum Ratings

COMMON ANALOG BOARD #2

FOOT PEDAL CIRCUITRY

Starting at the upper left-hand corner of the schematic, analog control voltage from the rear panel FOOT PEDAL(s) is applied to UlA and UlB, the 3360 VCAs. FOOT PEDAL control AMOUNT is applied through the linear control inputs of the 3360 (pins 5 and 10 respectively) by a preprogrammed amount from the FRONT PANEL controls. The signal is buffered by a 4558 U2A4B and applied to a series of 4016 ENABLE switches driven from DEMUX board latches. Depending on what is selected from the FRONT PANEL switches, the FOOT PEDALS are programmed for PITCH, FILTER CUTOFF or VOLUME for FOOT PEDAL #1 and MODULATION or OSCILLATOR 2 for FOOT PEDAL #2. The FOOT PEDAL information is routed to MASTER OSCILLATOR SUMMERS.

The FOOT PEDALS are wired with normaling jacks such that a FOOT PEDAL in either input automatically routes it to the other. Therefore, one FOOT PEDAL can control all the functions of the instrument. If two FOOT PEDALS are plugged in, the functions are separated.

A ZERO and OFFSET trim eliminate the offsets of the 4558 and 3360 to avoid any pitch shift in the output. When the FOOT PEDALS are not used, a constant voltage is applied to the final VCA to turn it ON, thereby the MEMORYMOOG will always have an output. In addition, the software deactivates the VOLUME ENABLE from ever coming on, eliminating an owner trap. That is, if no FOOT PEDAL is inserted and the FRONT PANEL VOLUME push button is ON, the MEMORYMOOG would normally output a zero control voltage and the instrument would be "dead". However, this function is disabled in the software to make the unit trap free.

LHC CIRCUITRY (BOARD #10)

Below the FOOT PEDAL circuitry is the FRONT PANEL TUNE CONTROL, and the OCTAVE switch which mounts on the LEFT HAND CONTROLLER. These are summed through the 4016 switch U4A such that during AUTOTUNE these functions do not affect the pitch READ to the CPU. During normal operation, U4A is ON but during AUTOTUNE it is OFF to eliminate the TUNE and OCTAVE from affecting the AUTOTUNE frequencies.

The TUNE control is a standard divide down potentiometer and the OCTAVE circuitry is mounted on board #10. The OCTAVE has a dual 393 comparator hooked up as a SET/RESET flip-flop. When "-1" is depressed, it sends the output of ULA high and latches the output of ULB low, turning the latch ON. When the "-1" output goes high, it turns Ql off and sends a voltage from U32 into the MASTER OSCILLATOR SUMMER to drop the oscillator summers one octave.

The PITCH WHEEL is also summed in through dead band diodes CRl and CR2 and applied to VCA USA. A programmed PITCH BEND AMOUNT of from one semitone to an octave is present from the program but can be overridden by the LEFT HAND CONTROLLER or FOOT PEDAL \$1. Next, there is a monophonic TRANSPOSE input from the DEMUX board that is originally generated on the CONTOUR/GLIDE board and is summed in turn, driving all the OSCILL through the individual MASTER SUMMERS.

THE MODULATION OSCILLATOR

The 3340 U22 is the MODULATION OSCILLATOR which has a rate control input which is taken from the CPU. It also has a modulation RESET input for ARPEGGIATOR functions which is software controlled such that a note played on the keyboard when in the ARPEGGIATOR mode, develops a short spike. This spike goes to Q8 which momentarily shorts out the OSCILLATORS. It's like a "SYNC" input whereby the OSCILLATORS can be "RESYN'd" while playing to keep everything "in time". The outputs are connected conventionally with the TRIANGLE, SAWTOOTH, REVERSE SAWTOOTH (inverted by U23B) and PULSE outputs connected through a series of electronic switches to VCA U11B which controls the MODULATION AMOUNT.

The MODULATION AMOUNT is controlled by FOOT PEDAL #2 through switch U3D and either the LEFT HAND CONTROLLER MODULATION WHEEL or from the programmed FRONT PANEL MODULATION AMOUNT as provided from the DMUX board. Thus, for any particular program, the preset MODULATION AMOUNT may be overridden by the LEFT HAND CONTROLLER or FOOT PEDAL #2. All these modulation signals are summed together, routed to VCA U11B, buffered by the 741, U12, applied to another series of 4016 switches and ultimately applied to the MASTER SUMMERS for OSCILLATOR, PULSE WIDTH and FILTER CUTOFF.

S & H AND NOISE CIRCUITRY

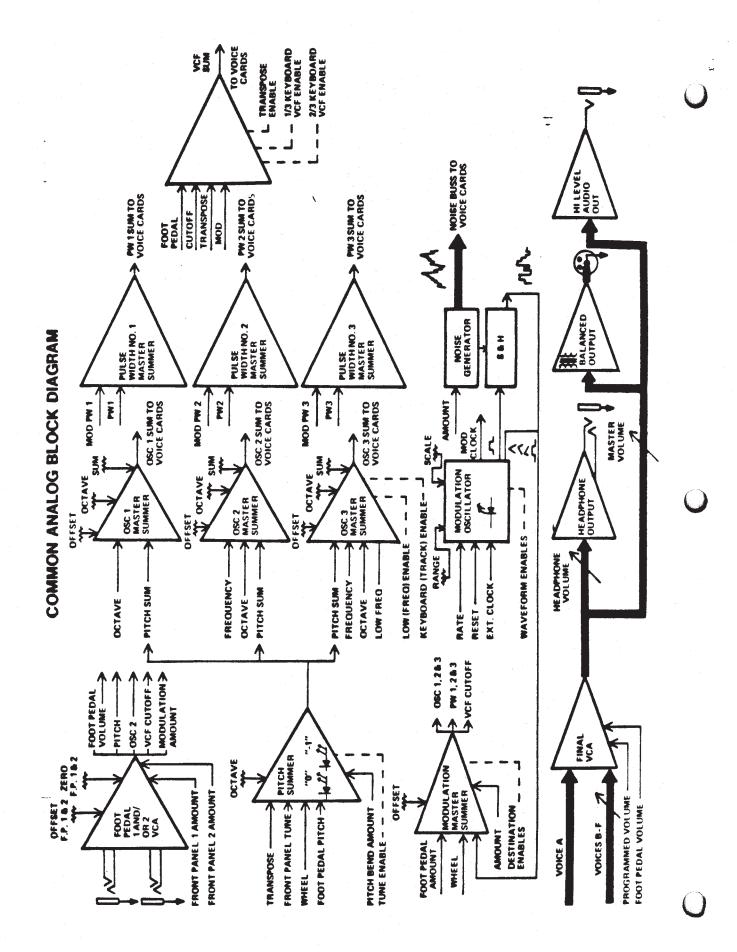
Included in the MODULATION OSCILLATOR output to UllB is the SAMPLE AND HOLD and NOISE outputs. In the lower right hand corner, the output from the MODULATION OSCILLATOR PULSE is used as a sampling pulse for the SAMPLE AND HOLD. Also, located there is U25, a 5837 pseudo-random digital noise generator followed by a pink noise filter and gain recovery amp U26A. The pink noise output is fed to a 3360 VCA volume control which is buffered by a 4558 U26B and routed out the NOISE buss to all VOICE CARDS. The pink noise is also low pass filtered by R215 and C25 and routed to a 353 buffer U27B, into the SAMPLE AND HOLD circuit consisting of Ell2 FET Q7 and buffer U27A. The NOISE is sampled by a positive edge from the PULSE waveform and the output from U27A is connected to a 4016 switch U14B which then serves as another MODULATION source.

The control signals discussed above are now applied to the various MASTER SUMMERS for ultimate distribution to the six VOICE CARDS. It should be noted that FRONT PANEL CONTROL voltages are first digitized and then reconstructed to analog voltages again after processing by the CPU. This allows the use of the analog control values by the VOICE CARDS and storage of the digital value of these analog voltages by the CPU for reference

MASTER SUMMING CIRCUITS

In the top center of the schematic are U15, U16 and U17, 4558 inverters that sum inputs for OSCILLATORS 1, 2 and 3 respectively. Each one is followed by another inverter stage of the same IC. Each has OFFSET, OCTAVE and SUM adjustment trimmers. All OSCILLATORS sum PITCH, OCTAVE, MONOPHONIC MODULATION AND TRANSPOSE and then uniquely sum specialized functions like OSCILLATOR 2 FREQUENCY, OSCILLATOR 3 FREQUENCY, etc. The LOW FREQUENCY/KEYBOARD CONTROL, for example, is a special control input for OSCILLATOR 3 which increases its range from +/- one octave to +/-2.5 octaves whenever OSCILLATOR 3 is used in the VOICE MODULATION mode.

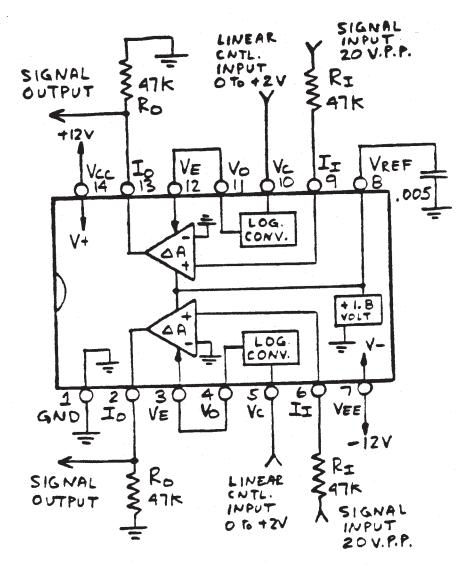
Similarly, to the right of the MASTER OSCILLATOR SUMMERS are the MASTER PULSE WIDTH SUMMERS which sum pulse width control voltages. Still further to the right is the MASTER FILTER SUMMER which sums the FRONT PANEL FILTER CONTROL, the FILTER MODULATION PITCH and CUTOFF OUTPUTS.


MONOPHONIC/POLYPHONIC FUNCTIONS

The MEMORYMOOG can be operated as a six voice polyphonic or a monophonic synthesizer which means between one and six VOICE CARDS can be selected to track the keyboard. Furthermore, in the HOLD mode, an entire chord can be transposed when a new single note is played. Thus, there is a need for the keyboard to output six independent drives for the VOICE CARDS for POLYPHONIC operation and a MASTER signal to drive all VOICE CARDS simultaneously for MONOPHONIC operation. In addition, there are certain applications where it is desirable for the FILTER to track a voltage proportional to the monophonic keyboard voltage.

Switches U28C&D provide the monophonic keyboard voltage when in the MONOPHONIC mode and turn ON while the normal VOICE CARD switches are turned OFF. This provides a common keyboard tracking signal to all VOICE CARDS. Zener diodes CR10 and CR11 level translate the FILTER ENABLE signal from zero to 15 volts down to +/- 7.5 volts for use by the 4016 switches.

THE AUDIO OUTPUT


At the lower left hand corner, the audio output from each VOICE CARD is summed together. Notice that VOICES B through F have individual trim pots to match the output VOLUME of each VOICE CARD to the A VOICE. The output is summed into a 3360 VCA which has a programmable output signal from the DMUX board such that a preset volume can be established for different programs. Therefore, FILTER CUTOFF variations can be compensated for with PROGRAMMED VOLUME levels. The output of the VCA is routed to U6B, another VCA which is for FOOT PEDAL override. This, in turn, is applied to a 353 buffer U7B, the output of which is routed to the MASTER VOLUME control on the FRONT PANEL. It returns through shielded cable to U7A, a 353 buffer, and next is applied to the unbalanced high level AUDIO OUTPUT. In turn, the audio is connected to Tl, an interstage transformer which provides a BALANCED OUTPUT. The signal is also applied to the HEADPHONE VOLUME control through an LM386 and finally to the HEADPHONE output jack. The 386 IC must be powered at less than 15 volts, therefore the 15 volts is dropped to 11 volts through Q2.

Page 27

V.C.A.

 \bigcirc

CEM3360 BLOCK DIAGRAM AND TYPICAL CONNECTION

DISASSEMBLY AND REASSEMBLY (Refer to the Accompanying Photographs and Diagrams)

REMOVING THE BASE

With the unit right side up on the workbench and the keyboard facing away, remove the three (3) self-tapping sheet metal screws on the rear panel. Remove the nine (9) self-tapping sheet metal screws, three (3) on either side, three (3) along the front of the base, by letting the edge of the unit hang over the end of the bench. Separate the cabinet from the base, making sure to clear the front edge of the keyboard. Lean the cabinet back onto its rear panel.

NOTE: Do not attempt to remove screws from base of unit by turning unit upside down as damage to front panel controls may result.

CAUTION - KEYBOARD PROTECTION

Before proceeding with further disassembly or servicing, care should be taken to protect keyboard from: -Scratches from solder spikes of printed circuit boards. -Chemical reaction of special cleaners or sprays to the plastic key parts. It is suggested that the keyboard be covered with a piece of soft foam or similar protective material during repair.

CONNECTOR REMOVAL

Virtually all connections to the PC board are made with either CIS, MTA or RIBBON CABLE connectors. If it is necessary to remove any of these connectors during troubleshooting, do so by grasping the connector housing firmly and lifting upward. In the case of the CIS and MTA connectors, NEVER PULL ON THE WIRES. Remove the ribbon connector as you would an IC, by inserting a small screwdriver between the pins and prying with slight pressure. NEVER REMOVE A CONNECTOR FROM ITS SOCKET BY PULLING ON THE RIBBON CABLE.

REMOVING THE CONTOUR BOARD

To remove the CONTOUR BOARD, the keyboard must first be removed (see KEYBOARD REMOVAL). With keyboard removed, locate the PC board mounting posts and lift the board up while slightly bending on the locking tab.

REMOVING THE DIGITAL BOARD

The DIGITAL BOARD is held in by four (4) screws. The rear screws attach the board to hinged standoffs. The DIGITAL BOARD is also attached by a tie-wrap to the COMMON ANALOG BOARD. Note the use of insulation (fish paper) on the trace side of the board.

REMOVING THE COMMON ANALOG BOARD

The COMMON ANALOG BOARD is held in by four (4) screws. The rear screws attach the board to hinged standoffs. The COMMON ANALOG BOARD is also attached by a tie-wrap to the DIGITAL BOARD. Note the use of insulation (fish paper) on the trace side of the board.

REMOVING DMUX BOARD The DMUX BOARD is mounted below the DIGITAL and COMMON ANALOG BOARDS using four (4) standoffs. These two (2) boards must be removed to remove the DMUX BOARD.

If problem is isolated to the DMUX BOARD, components on this board may be replaced by removing the eight (8) mounting screws from the base and received the screws from the base and removing the entire three (3) board assembly as a unit.

REMOVING VOICE CARDS

There are six (6) VOICE CARDS mounted in a three layer "sandwich" formation. The two (2) top right-hand boards (VOICE CARDS A & B) are mounted back-to-back with the center two (2) boards (VOICE CARDS C & D) using four (4) screws. The two (2) rear screws attach the four (4) boards to hinged standoffs, spacers and fish paper.

VOICE CARDS E & F are mounted to the base of the unit. The top four (4) VOICE CARDS must be removed in order to remove these two (2) VOICE CARDS. VOICE CARD E is located at the center and VOICE CARD F is loaced on the right-hand side.

If a problem is isolated to either VOICE CARD E or F, components on these boards may be replaced by removing the eight (8) mounting screws from the base and removing entire six (6) board assembly.

REMOVING THE POWER SUPPLY The POWER SUPPLY is attached to the rear Ful with six (6) screws, four (4) of which which accessible from the rear of the unit and two (2) are accessible from the inside below the POWER SUPPLY PC board. Once the mounting screws are removed, remove the four (4) connectors and slip the subassembly out

through the rear panel.

Troubleshooting of the POWER SUPPLY may be accomplished by placing it atop the DIGITAL/COMMON ANALOG BOARDS under a suitable insulating material.

REMOVING FRONT PANEL LEFT SIDE CONTROL BOARD (LSC)

It is recommended, for ease of service, to remove the POWER SUPPLY (See POWER SUPPLY removal) before attempting the removal of the LSC. Once the CONTROL BOARD is removed, it may be placed on the DIGITAL BOARD/COMMON ANALOG assembly using a cardboard separator or material. The POWER SUPPLY may similar temporarily be reinstalled for unit servicing using the two (2) inside screws.

To remove the LSC board, remove the control knobs and the eleven 5/16" hex nuts, taking note of four (4) fiber weekers used on washers used on note of four (4) fiber earlier versions (approximately S/N 1400 and below).

RIGHT SIDE CONTROL BOARD (RSC) This is accomplished by removing the coll knobs. The FREQUENCY CONTROL for OSCILLATOR 2 and OSCILLATOR 3 requires a .050 and a 1/16" hex key wrench. Remove the twelve (12) 5/16" hex nuts.

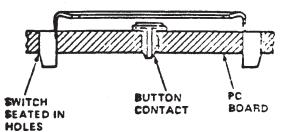
NOTE: The LEFT and RIGHT SIDE CONTROL BOARDS are electrically connected together using two (2) ribbon cables. When reinstalling these boards make sure these cables lay flat against the PC board so as not to obstruct switch action.

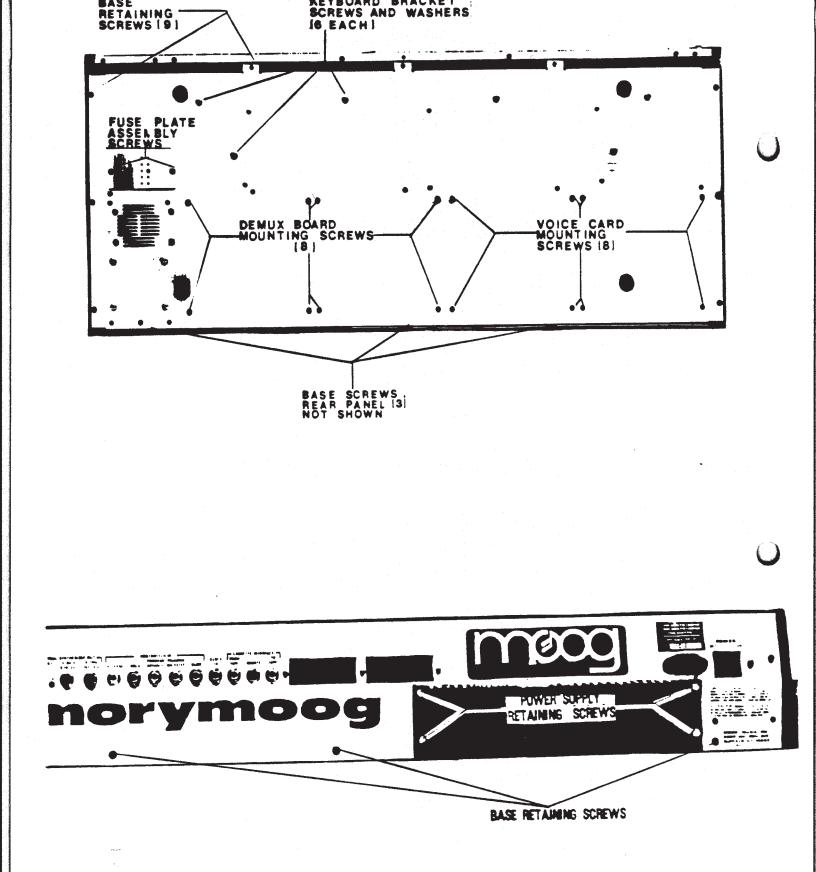
SWITCH REMOVAL

The switch assembly is made up of four (4) components: the spring contact which is shown mounted on the PC board & soldered in place, the switch contact button (not shown in photo), the switch button or acutaor, e.g. "D" and the return spring. The plastic button may be removed by using the handle end of a screwdriver and pressing it on the two (2) stems that protrude through the PC board. When reinstalling the button use slight pressure to push the two (2) stems through the PC board insuring the spring is seated correctly and does not short against the switch contacts.

SWITCH CONTACT REPLACEMENT

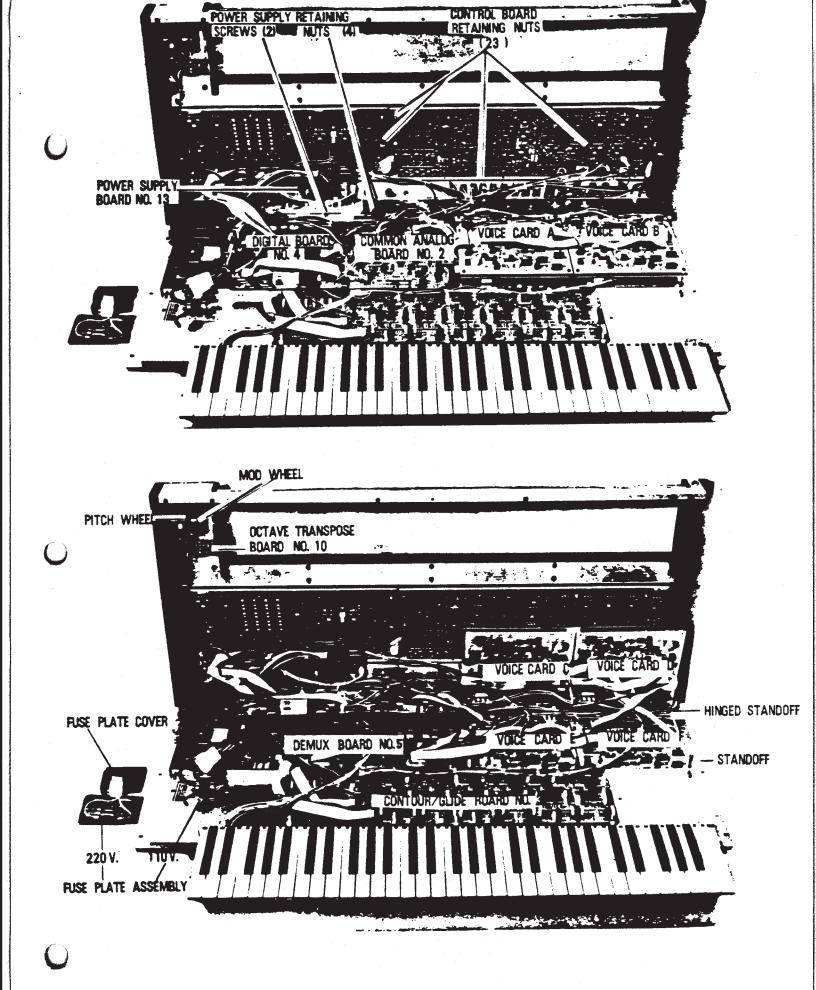
If it is necessary to replace a spring contact switch or a contact button, extreme care must be taken when installing the new components.

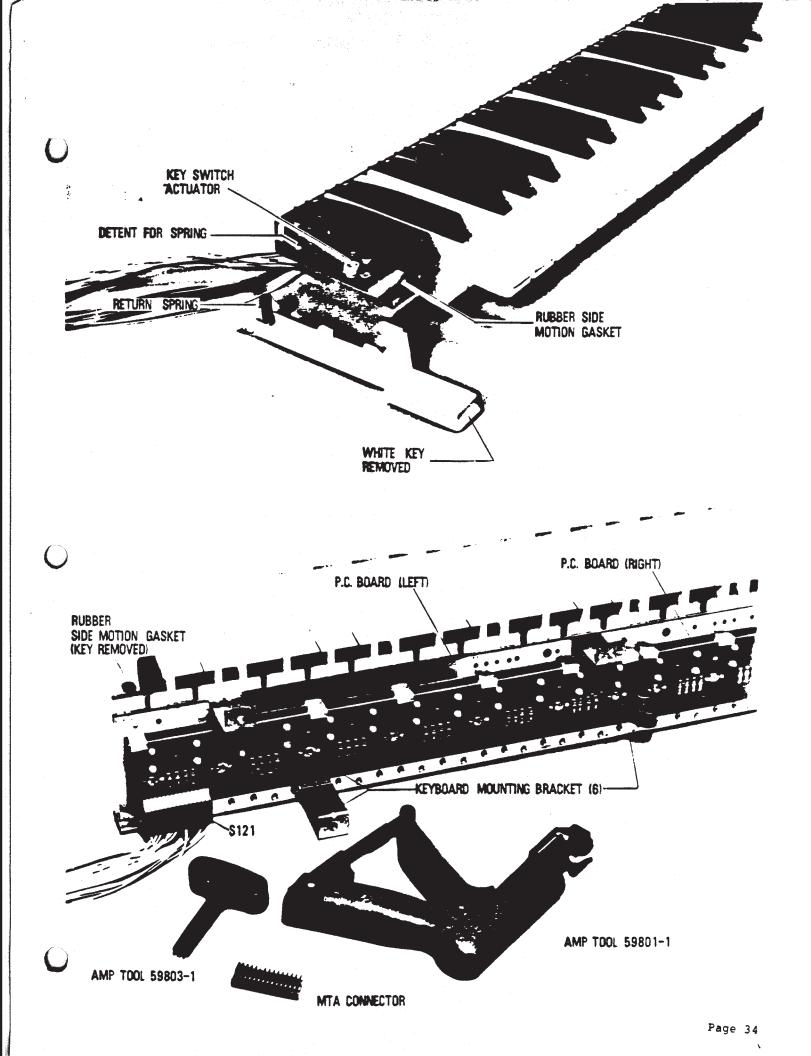

The contact button is replaced by first removing the switch contact, then the contact button. The contact button must be seated against the PC board. The contact button may also be inserted using an AMP hand tool, model number 274262-1. The spring contact may be replaced using AMP tool number 274268-1 or by hand. When inserting by hand, use extreme caution and lightly press on each side-mounting pin of the contact until it is through the PC board. NEVER push the contact into the PC board by pressing on the CENTER of the spring contact as this will misshape it. Note the accompanying insertion diagram.


REMOVING THE KEYBOARD

The keyboard is secured with six (6) screws accessible from the underside of the unit. The connector at the left rear of the keyboard assembly may also be disconnected for complete removal of the keyboard.

KEY REMOVAL


While holding the front end of the key and applying slight pressure to rear of the key, disengage the notches from keyboard frame noting that the key is held in not only by the notches but also by side pressure against the frame.



•

U

TROUBLESHOOTING

GENERAL

the synthesizer repairs involve Many replacement of integrated circuits. However, before replacing a suspect device, always double check the inputs and power supply terminals before proceeding. For any devices that are installed in sockets, thoroughly check each device for a possible "bent under" pin on the IC before proceeding with detailed troubleshooting of the circuit.

LINEAR IC

A linear IC with DC Input Offset measured between the + and - inputs should be no greater than 10mV apart or device is faulty.

Note in the accompanying diagram a typical IC used in a linear mode with negative feedback.

CMOS IC's usually fail by latching the output(s) and getting hot to the touch.

OTA

Pin 5 of a 3080 type OTA should be 0.7V more positive than pin 4 when turned on. Troubleshoot it like a forward biased diode.

Use the charts provided on the following pages along with the circuit description and block diagrams to partition a problem, then, using the schematics and parts location information on the PC boards, final diagnosis and repair can be effected.

Once it is determined that an IC must be replaced, install the new one in a high quality IC socket. This will protect the printed circuit board in case further troubleshooting is necessary. Sometimes an IC known to be good can be used from another circuit to confirm a suspected problem.

NOTE: If the old IC is found to be good, put the old one back in. The old IC has more time in use and is therefore more reliable than a new IC of unknown performance.

Many faulty or shorted ICs will operate "hot" and can be detected with the "wet finger test".

POWER SUPPLY SUBASSEMBLY GENERAL SERVICING The -15, +15 and +5 VDC outputs of the power supply subassembly must be checked first and adjusted to their nominal values within 10 millivolts prior to any equipment servicing. The most common anticipated problems related to the power supply subassembly are open recitifier diodes and transistors.

POWER SUPPLY SUBASSEMBLY TROUBLESHOOTING Troubleshoot the power supply subassembly using the circuit description. Note that voltage levels displayed on the schematic diagrams are not absolute values as readings may vary between units. Once the problems localized, check the suspected part by direct substitution if possible. Otherwise, use a voltmeter or oscilloscope to determine the malfunctioning part. Note the color code on the power supply schematics: +15V (red), -15V (black), +5V (yellow), ground (green).

TROUBLESHOOTING (continued)

CONNECTOR REPAIR AND REPLACEMENT

There are two basic types of connectors in the MEMORYMOOG synthesizer made by AMP. The first type is the Mass Termination Assembly (MTA) insulation displacement type connector.

The MTA 100 Series connector is based on .1 inch mounting centers pin spacing and is also color coded for a wire gauge. The red series MTA connectors in the MEMORYMOOG are to be used with only 22 gauge wire.

CAUTION

When disconnecting an MTA connector from a printed circuit board, be sure to firmly grip only the "connector housing" - NEVER disconnect it by pulling on the wire(s).

In order to properly repair an MTA connector in the field it should be replaced. First remove the old contact from the housing by poking a solder pick into the side "ramp" thereby freeing the contact. Next, install a new contact into the housing, cut off any damaged portion of the wire and proceed as follows:

1. Use an AMP pistol insertion tool model 59801-1 and insert the housing from the left side. Placing the wire in the contact, secure it by tightening the tool handle or

2. Mount the housing into a heavy vise, insert the wire and press firmly into place by using the AMP hand tool, model 59803-1.

The second type of connector is the Commercial Interconnection System (C.I.S.) crimp socket which has 0.1 inch (2.5mm) mounting centers. This is a reliable connection system which can easily be replaced if necessary. The portion of the connector attached to the printed circuit board (header) is replaced by simply soldering a new one in place. Headers of 5, 6 or more pins can easily be cut using wire cutters to replace 1, 2, 3 or 4 pin versions. Simply score the header where the desired cut is to be made and cut the header appropriately. Refer to the accompanying illustrations.

Headers which are causing poor or intermittent solder connections on a printed circuit board should be resoldered to ensure the best possible electrical and mechanical connection. If connector plating problems are suspected, use an extra activated multicore solder such as 0.064 diameter ERSIN No. 782/745 solder and a 40 watt soldering iron.

NOTE: BE SURE TO AVOID LONG EXPOSURE OF THE IRON TO THE PRINTED CIRCUIT BOARD TRACES AND TO CLEAN THE ACTIVATED FLUX RESIDUE FROM THE PRINTED CIRCUIT BOARD AFTER SOLDERING IS COMPLETE. RECOMMENDED FLUX CLEANER IS MILLER-STEPHENSON MS-190HD, "HEAVY DUTY FLUX REMOVER" OR A METHYL ETHYL KEYTONE PRODUCT.

Replacement of the female C.I.S. connector terminal is sometimes necessitated if a wire breaks at the crimp within the socket. The spring loaded terminal may be removed using an AMP Extracting Tool, AMP Part No. 457445-1A or by inserting two pointed instruments into each side of the socket allowing a particular terminal to be pulled out or pushed out using an existing header pin or 1/4 watt resistor lead. The new terminal may be attached to the wire by using an AMP Hand Crimping Tool, AMP Part No. 90062, or by cutting the tabs off the new terminal and tack soldering it to the appropriate wire which has been stripped back 5/32 inch (3.9mm). The soldering must be neat and flattened with needle-nose pliers to ensure an easy fit into the connector housing.

REYBOARD AND CASE MAINTENANCE

To clean the wood end caps, the aluminum chassis and front panel overlays, a damp cloth with a mild detergent is sufficient.

The keyboard may also be cleaned by using a damp cloth and mild detergent. However, if there is light dirt or scratch marks on keys, hand rubbing with a fine polishing compound works best. For deeper scratch marks or ground-in dirt, a variable high speed drill with cloth buffing wheel is recommended. The buffing wheel should be used carefully with a small amount of fine polishing compound. Be sure to use light pressure as heavy pressure or long exposure to one area will cause the plastic keys to melt or warp due to friction.

The conductive rubber style keyboard requires no maintenance and if contaminated with a foreign substance spilled into the mechanism, it should be replaced in its entirety. Refer to disassembly section for key cap replacement.

POWER SUPPLY TROUBLESHOOTING GUIDE

1	Apply primary power to	TE meanay walkasa in maaree
••	MEMORYMOOG and connect voltmeter negative test lead to "-" side of C74 on DMUX board and and positive test lead to "+" side of C74. Observe digital voltmeter and adjust +15 VDC trim pot R19 on power supply assembly for +15 VDC +/-10mv.	If proper voltage is present proceed to step 2. If output voltage is not present or cannot be adjusted disconnect power supply output connector and measure voltage between pins 7 (+) and 9 (-). If present, perform step 4. If not present, trouble is in power supply assembly.
2.	Connect positive test lead to "+" side of C73 on DMUX board. Observe digital voltmeter and adjust +5 VDC trim pot R33 on power supply assembly for +5 VDC +/-10 mv.	If proper voltage is present, proceed to step 3. If output voltage is not present or cannot be adjusted disconnect power supply out- put connector and measure voltage between pins 14 (+) and 12 (-). If present, per- form step 4. If not present, trouble is in power supply assembly.
3.	Connect positive lead to "-" side of C75 on DMUX board. Observe digital voltmeter and adjust -15 VCD trim pot R8 on power supply assembly for -15 VDC +/-10mv.	If proper voltage is present, power supply assembly is operating properly. If output voltage is not present or cannot be adjusted disconnect power supply output connector and measure voltage between pins 4 (-) and 2 (+). If present, perform step 4. If not present, trouble is in power supply assembly.
4.	Reconnect power supply output connector and digital voltmeter test leads to pins on DMUX BOARD where proper voltage was not available.	Monitor digital voltmeter sequentially disconnect power supply input connectors on the printed circuit boards until voltage indication appears (shorted board located). Troubleshoot or repair board as outlined in the applicable section. If voltage indication still is not present, trouble is in cable harness.
5.	Loss of all output voltages.	Power source, power cord, power switch, fuses and Tl.

6. -15 VOLT SUPPLY -Loss of -15V output Voltage buss external to power supply shorted to common, P132, CRl thru CR4, voltage. Q1, Q2, IC1, R8, P131 and ĈЗ. Voltage at pin 6 of ICl ICl, Cl, R2 thru R4, R6 and is not -7.85 +/-0.39V or and R10. voltage at pin 10 is less than -1.62V. R10, R7 thru R9. Loss of -15V output adjustment. Excessive -15V output Q1, Q2 and IC1. voltage, no voltage control. _____ Low -15V output voltage. CRl thru CR4, instrument wiring shorted (power supply in current limiting). 7. +15 VOLT SUPPLY Voltage buss external to Loss of +15V output power supply shorted to voltage. common, P133, CR8 thru CR11, Q3, Q4, IC2, R19, P131 and C6. IC2, C4, R13 thru R15, R17, R21, CR12 and C6. Voltage at pin 6 of IC2 is not +7.15 +/-0.36V or voltage at pin 10 is less than +16.7V. Loss of +15V output R18 thru R21. adjustment. Excessive +15V output Q3, Q4 and IC2. voltage, no voltage control. Low +15V output voltage. CR8 thru CR11, instrument wiring shorted (power supply in current limiting). 8. +5 VOLT SUPPLY Loss of +5V output Voltage buss external to power supply shorted to common, P3, CR15 thru CR18, Q5 thru Q7, IC3, R33, P4 and voltage. P9. Voltage at pin 6 of IC3 IC3, C7, R35, R24 thru R28, is not +7.15 +/-0.36V or R30, R31, CR19 and C9. voltage at pin 10 is less than +7.32V. Loss of +5V output R33 thru R35. adjustment. _____ ---------Excessive +5V output Q5 thru Q7 and IC3. voltage, no voltage control. Low +5V output voltage. CR15 thru CR18, instrument wiring shorted (power supply in current limiting).

Page 38

VOICE CARD TROUBLESHOOTING GUIDE

The MEMORYMOOG has a software routine to isolate defective VOICE CARD OSCILLATORS. Depress the AUTOTUNE button and observe the display. In 5 to 10 seconds, the display will show "X tuned", where X is the number of usable voices. X will equal 6 if all VOICE CARDS are good. If X is less than 6, faulty VOICES can be isolated as follows:

Depress "C7" followed by "ENTER" twice.
 The display will show "VOICE ?".

3. Depress any VOICE number (1 through 6) desired to be tested, where VOICE A = 1, VOICE B = 2, etc.
4. After about 1 second the display will show "OSC ?".

5. Depress any oscillator number (1 through 3) desired to

be tested. 6. One of the following will be shown on the display in a flashing format:

"DEAD OSC", which is self-explanatory, or the letters "XX", "YY" or "22". "XX", "YY", "22" are 2-digit hexidecimal numbers indicating the AUTOTUNE voltages for the OSCILLATOR. Nominal values of 7F hex would indicate all three oscillators are close in value to each other but a 00 or FF display for one or more of the three numbers indicates the oscillator(s) cannot be AUTOTUNED and must be recalibrated.

7. Depress ENTER twice to continue testing as in Step A2 for other VOICES and/or OSCILLATORS. Entering an invalid number for a VOICE >6 or OSCILLATOR >3 will exit this testing mode.

INDIVIDUAL VOICE CARD TROUBLESHOOTING SYMPTOM CAUSE/REMEDY

SYMPTOM	CAUSE/REMEDI
OSCILLATORS is dead, or waveforms are missing.	heck for 10 volt waveforms (PULSE, SAWTOOTH, TRIANGLE) at: Osc. 1,U3 (4016) Pins 1,4 & 8 Osc. 2,U7 (4016) Pins 1,4 & 8 Osc. 3,U10(4016) Pins 1,4 & 8
from Step 1.	Faulty (3340) VCO or (4558) Osc. 1, Ul(3340), U2 (4558) Osc. 2, U5(3340), U6 (4558) Osc. 3, U8(3340), U9 (4558)
3. ALL waveforms present from STEP 1.	Check for proper switching of the waveforms (PULSE, SAW- TOOTH, TRIANGLE) at: Osc. 1,U3 (4016) Pins 2,3 & 9 Osc. 3,U10(4016) Pins 2,3 & 9 Use the FRONT PANEL WAVEFORM switches to enable the individual waveforms & proceed to Step 5.
 TRIANGLE waveform and/or PULSE wave missing from STEP 1 sawtooth. 	Osc. 1, U2 Faulty (4558) Osc. 2, U6 Faulty (4558) Osc. 3, U9 Faulty (4558)
not switching from STEP 3.	Check +15V enable inputs on: PULSE Pinl3/Osc 1,U3 (4016) SAWTOOTH Pin 5/Osc 2,U7 (4016) TRIANGLE Pin 6/Osc 3,U10(4016)
6. OSC. 1 AND 2 dead but OSC. 3 is OK.	Faulty (3360) VCA, U4.
7. OSC. 3 is dead but OSC 1 & 2 are OK.	Faulty (3360) VCA, U13.
8. OSC. 1, 2 & 3 are dead but NOISE works.	Check for output on Ul2, Pin 1, (353/TLO72). Replace if no output or latched at +15V or -15V. Signal may approach approximately 16V peak to peak, with associated mixer controls at maximum.

9. OSC. 1, 2, 3 & NOISE are ALL dead. Note: This normally indicates a VCF and/or VCA problem.	 A) Observe input signal to VCF at "+" side of C26. This has a 40mV p-p small signal superimposed on a +1.37V DC level. B) Set front panel CUTOFF to maximum and EMPHASIS to minimum. C) The AC signal of STEP A should appear differentially on the output of the VCF ladder, U20 Pins 3 and 5. If signal is present, proceed to to STEP 12.
10. No VCF output from STEP 9C. This narrows the problem to either the VCF ladder or current source.	Bypass the VCF current source by shorting collector 2 of Q14 to ground (Base 2 of Q14). This forces the VCF wide open. If there is still no signal present at U20 pins 3 & 5, proceed to STEP 13.
11. Signal is present from STEP 10. Problem is in current source. U19, Q4, R173 through R176.	 A) Remove short from Q14 (STEP 10) and place a jumper across R175 & observe signal at U20, Pins 3 & 5. B) If signal is still present, check DC voltage at U19 Pin 1 and replace if voltage is latched at +14V or -14V. C) If no signal is present from STEP 11A, check DC voltage at U19 Pin 6 for zero volts. D) If Pin 6 is zero, replace Q14. E) If Pin 6 is positive, jump Q14 Collector 1 to Collector 2 and recheck voltage at U19 Pin 6. F) If voltage is now zero, replace Q14: if voltage is not zero, replace U9.
12. VCF recovery amp.	Replace U20 (353 IC) if there is no signal on Pins 1 & 7. If signal is present, go to STEP 14.
13. VCF ladder problem.	 A) Check for DC voltage balance of less than 0.1V difference between the emitters of the following transistor pairs; Q9-10, Q7-8, Q5-6 and Q14 Emitter 1 to Emitter 2. B) Replace any out of tolerance pairs. C) Go back to STEP 10 if any transistors were replaced. D) Replace C28 through 31 and go back to STEP 10. E) Check DC voltages on: Q11, Base 1 & 2; +1.4V Base of Q9 & 10; +2.7V Base of Q7 & 8; +4.1V Base of Q5 & 6; +5.5V Base 1 & 2 of Q4; +6.9V Replace bias network N2 if voltages deviate greatly from above and go to STEP 10. F) Replace all transistors Q4 through Q11 NOT replaced in STEP 13B and go to STEP 10.

Q

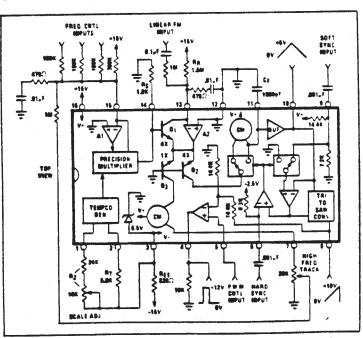
()

14. VCA problem.	 A) Check for about 40mv of signal on U22 pins 2 & 3. Go to STEP 12 if signals are not present. B) Short Q13 collector to ground (BASE) and check for signal on U22 Pin 6. Replace U22 if no signal is present. C) Replace Q13 if signal is present.
15. Emphasis problem.	 A) Verify VCF is working

CEM 3340

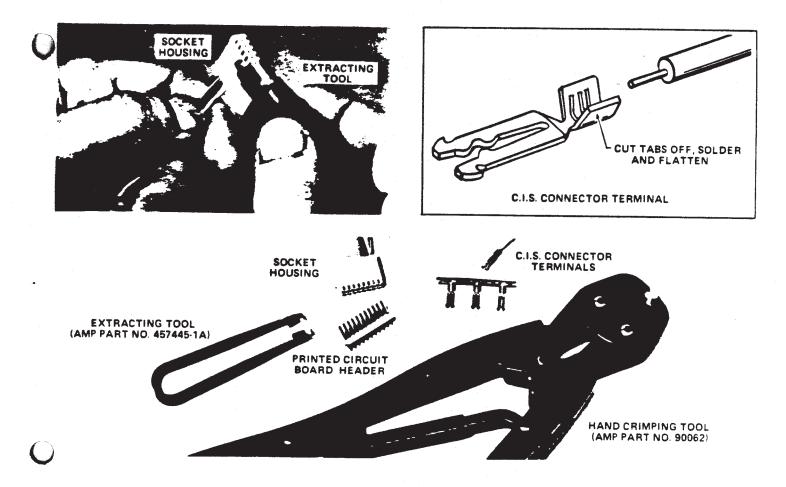
Voltage Controlled Oscillator

The CEM 3340 and CEM 3345 are completely self contained, precision voltage controlled oscillators, featuring both exponential and linear control scales and up to four buffered output waveforms: triangle, sewtooth, square, and pulse with voltage controllable pulse width. Full temperature compensation makes these VCOs extremely stable, and eliminates the need for a temperature compensation resistor. The highly accurate exponential and linear control inputs are virtual ground summing nodes, allowing multiple control voltages to be mixed within the device itself. Also included is provision for hard and soft synchronization of

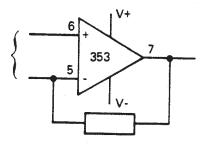

the frequency, and an output for easy adjustment of high frequency tracking. Special care in the design ensures oscillation start-up under any power-on sequence and supply conditions. Although a low voltage

process has been used to reduce die size, cost, and leakage currents, an on-chip 6.5 volt zener diode allows the device to operate off ±15 volt supplies, as well as +15,-5 volt supplies.

Absolute Maximum Ratings

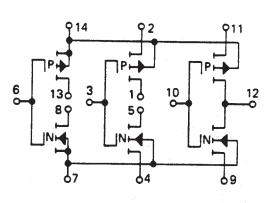

Voltage Between VCC and VEE Pins	+24V,-0.5V
Voltage Between VCC and Ground Pins	+18V, -0.5V
Voltage Between VEE and Ground Pins	-6.0V,+0.5V
Voltage Between Frequency Control Pin or Reference Current Pin and Ground Pin	± 0. ∂±
Voltage Between Multiplier Output Pin and Ground Pin	+6.0V, -1V
Current through Any Pin	±40mA
Storage Temperature Range	-55°C to +150°C
Operating Temperature Range	-25°C to +75°C

CEM 3340 Circuit Block and Connection Diagram



Page 41

REPAIR AND TROUBLESHOOTING


LINEAR IC

ΟΤΑ

CMOS IC

CD4007A Functional Diagram

Terminal No. 14–V_{DD} Terminal No. 7–V_{SS}

MEMORYMOOG CALIBRATION PROCEDURE

INTRODUCTION

Most of the adjustments below are interdependent procedures which MUST be performed in the order presented, however, normal oscillator recalibration WILL NOT require all steps to be performed.

The Memorymoog PROMs have a considerable amount of diagnostic software built in, therefore, try the SOFTWARE TUNING procedure FIRST and the test equipment procedure only as necessary. The replacement of an IC that has an associated trim potentiometer will require recalibration, except that the replacement of a 3340 oscillator IC may ONLY require SOFTWARE oscillator TUNING - again try the SOFTWARE TUNING FIRST!

THE SOFTWARE OSCILLATOR TUNING OUTLINE

o Find the out-of-tune oscillator(s). o Note the AUTOTUNE parameters and perform minor recalibration where

necessary. o Perform major oscillator recalibration.

LOCATING THE OUT-OF-TUNE VOICE(S) AND OSCILLATOR(S)

o Hit 2, ENTER for the straight brass
program #2.

o Hit KB MODE, 1 and ENTER to put the Memorymoog into the "POLY 1" mode (cyclic mode). The display will read "EDIT".

o Hit C, 5 and ENTER to electrically center the oscillator frequency settings of oscillators 2 and 3 (unison). The display will read "FREQ CTR".

O Hit C, 4 and ENTER and listen for an out-of-tune voice (rapid beating sound) by repeatedly playing the high C key. The display will initially read "DEFEAT ?" and then will indicate the voice being played, "1", "2", etc. WRITE DOWN THE OUT-OF-TUNE VOICE NUMBER!

For any out-of-tune voice, isolate and listen to each OSCILLATOR by turning on and off the individual waveform switches (SAWTOOTH) for oscillators 1, 2 & 3. This will locate the out-of-tune oscillator -WRITE DOWN THE OSCILLATOR NUMBER!

NOTING THE AUTOTUNE PARAMETERS

O Hit C, 7, ENTER and ENTER again; the display will then query "VOICE ?"; hit the number of the voice above, which was out-of-tune, BUT DO NOT HIT ENTER!; Wait a second and the display will then query "OSC ?"; hit the number of the oscillator above which was out-of-tune but, again, DO NOT HIT ENTER; the display will then flash an expanded scale version of the AUTOTUNE voltages in a hexidecimal (HEX) format indicating from left to right a two digit RANGE, SCALE and HIGH TRIM code.

O WRITE THESE VALUES DOWN with associated voice and oscillator numbers from above. Note that the second digit may "bobble" +/- one digit. An "ideally" tuned oscillator would display 7F 7F 7F. See the accompanying hexidecimal chart. "DEAD OSC"

The AUTOTUNE voltages will flash so long as the oscillator is tuned within a +/- 50c range. However, if the oscillator's tuning is outside this capture range, the display will indicate "DEAD OSC". The oscillator usually is not dead but simply outside the AUTOTUNE range. See the MAJOR OSCILLATOR RECALIBRATION section of this procedure.

o A MINOR RANGE ADJUSTMENT. If the SCALE and HI are within +/- 2 digits of the RANGE, but the RANGE is too far from the 7F nominal value, a simple range adjustment is all that is necessary. * indicates the trim being adjusted in the example.

EXAMPLE: VOICE 1 OSC 1 52* 54 53 RANGE SCALE HI A difference of 1 or 2 between these values means the oscillator is close enough in SCALE and HIGH TRIM but it's RANGE is too low.

EXAMPLE:VOICE 1OSC 17F*8180RANGESCALEHIReadjustmentof the RANGE to the 7Fnominal value alsobrings the SCALE andHIGHTRIM to acceptable values. RANGE trimnote:to INCREASE the RANGE readings, turnOSC1£2RANGE trims COUNTER-CLOCKWISEand OSC3RANGE trim CLOCKWISE.

o TOUCH-UP TUNING. Complete readjustment will be necessary if there are differences between the three oscillator values exceeding +/- 2 DIGITS. Below is an example of this condition. * indicates the trim being adjusted in the example.

EXAMPLE: VOICE 1 OSC 1 A3 9E* 94 RANGE SCALE HI These oscillator values are very far apart; first adjust the SCALE to approximately EQUAL the RANGE. (Note that the SCALE trim affects the RANGE and HI). SCALE trim note: To INCREASE the "SCALE" readings, turn OSC 1 & 3 SCALE trims CLOCKWISE and OSC 2 SALE COUNTER-CLOCKWISE.

EXAMPLE: VOICE 1 OSC 1 C1 C3 B0* RANGE SCALE HI Next adjust the TRIM to approximately EQUAL the RANGE and SCALE. HI trim note: TO INCREASE the "HI" readings, turn, OSC 2 ± 3 HI trims CLOCKWISE and OSC 1 HI trim COUNTER-CLOCKWISE.

EXAMPLE:		VOICE	1	OSC	1	
	C1*		C3	ALE		Cl HI
	RANGE		SCI	ALL L		

Lastly adjust the RANGE to the nominal value of 7F and the other adjustments will follow automatically.

EXAMPLE:	VOICE 1 OS	SC 1
75	81	75
RANGI	E SCALE	HI
This is the end of		
procedure for mi	nor VOICE	OSCILLATOR
recalibration. If	it is ne	cessary to
proceed to identi	ify other	out-of-tune
voices and/or osc		
"hold" the ENTER sv	itch until	the display
reads "ENTER"; the		
the display will		
which VOICE and os	scillator to	display. An
ENTER instruction v	vill not be	accepted if
the flashing disp		
state. To exit this		
ENTER when the displ	lay gueries "	VOICE?".

OSCILLATOR RECALIBRATION. 0 MAJOR Oscillators for which the display indicates "DEAD OSC" can be brought into range "by ear" using a tuned oscillator of the same VOICE as a reference source assuming the oscillator is simply out of the AUTOTUNE capture range.

This procedure will be required for a 3340 VCO replacement or for troubleshooting a suspected VCO that is swapped on a VOICE CARD to confirm tuning instability.

o Defeat all voices EXCEPT the one to be recalibrated. If, for example, VOICE 1 is out-of-tune, the following routine will defeat the other VOICES (2 through 6):

C, 4, ENTER "DEFEAT ?", 2 ENTER C, 4, ENTER "DEFEAT ?", 3 ENTER

C, 4, ENTER "DEFEAT ?", 4 ENTER C, 4, ENTER "DEFEAT ?", 5 ENTER

C, 4, ENTER "DEFEAT ?", 6 ENTER

This allows repeated notes to be played in the cyclic mode (POLY MODE 1) with only the out-of-tune oscillator showing in the ALPHANUMERIC DISPLAY.

o Hit 2, ENTER for the straight brass PROGRAM #2.

o Hit 4 foot OCTAVE for oscillators 1, 2 & 3.

o Hit C, 6, ENTER to clear out previous AUTOTUNE voltages.

o Hit C, 5, ENTER for a unison sound.

o Hit C, 4, ENTER and repeatedly play the high C key. Note that the ALPHANUMERIC display should ONLY show the VOICE to be recalibrated. If not, go back to the defeat routine above.

o Using the waveform selection switches (in this case, the SAWTOOTH switches), compare the out-of-tune oscillator with ONE of the good oscillators - the second good oscillator should be turned off.

o Hold down the low A (Al) and adjust the associated RANGE trim for unison.

o Hold down the MIDDLE (third) A (A3) and initially adjust the associated SCALE trim for "unison" but note the number of turns needed for unison (example: three The SCALE trim clockwise). turns

significantly interacts with the RANGE trim, therefore, "overshoot" this SCALE trim by twice the number of turns additional turns clockwise). (example: Repeat the six RANGE and SCALE adjustments until both the low, and middle A notes will zero beat.

o Hold the High A (A5) and adjust the associated HI trim for zero beats. Refer to the TOUCH UP tuning procedure above for further minor adjustments if the oscillator will not autotune. When this tuning procedure is completed, hit C4, ENTER, ENTER to ENABLE all six voices. The display will then indicate "ENABLE".

ABBREVIATED OSCILLATOR TUNING WITH EQUIPMENT

equipment, a shortened Using test oscillator tuning procedure mav be accomplished as follows: Perform POWER SUPPLY, DMUX and PRELIMINARY OSCILLATOR TUNING (Steps I, II and III); omit the next four steps - preliminary CONTOUR/GLIDE, preliminary COMMON ANALOG, FILTER tuning and VCA balance (Steps IV, V, VI and VII) -unless an associated part has been replaced; proceed with MAIN OSCILLATOR TUNING (Step VIII), MONOPHONIC SCALING adjustments (Step IX) and LHC -OCTAVE TRANSPOSE (Step X). Therefore, abbreviated oscillator tuning consists of only Steps I, II, III, VIII, IX and X. The remaining adjustments, such as MODULATION OSCILLATOR (Step XI), PITCH WHEEL offset (Step XII), VOICE MODULATION offset (Step XIII) and FOOT PEDAL adjustments (Step XIV) can all be skipped associated parts have been unless replaced.

NOTE:

NOTE: When performing MAIN OSCILLATOR tuning Step VIII be aware that the SCALE trim SIGNIFICANTLY offsets the RANGE trim. To expedite tuning time, "over-shooting" the SCALE trim by factor of two in the opposite direction speeds tuning, eg. if the SCALE is 10c flat, turn the SCALE adjustment approximately 20c sharp.

WARMUP AND ACCURACY

Turn power on and allow unit to warm up at least ten minutes before attempting calibration. Use of a 4-1/2 digit DVM is NECESSARY for accurate calibration.

I. POWER SUPPLY ADJUSTMENTS -15V SUPPLY ADJUSTMENT (4-1/2 DIGIT DVM REQUIRED)

1. Attach the negative DVM probe to the negative side of C74 and the positive probe to the negative side of C75, both on the DMUX board.

2. Adjust R8 on the POWER SUPPLY board for 15.000 volts. +15 VOLT SUPPLY ADJUSTMENT (4-1/2 DIGIT DVM REQUIRED) 1. Attach the positive lead of the DVM to the plus side of C74 on the DMUX board. 2. Adjust R19 on the POWER SUPPLY board for 15.000 volts. +5 VOLT SUPPLY ADJUSTMENT 1. Attach the plus lead of the DVM to the positive side of C73 on the DMUX board. 2. Adjust R33 on the POWER SUPPLY board for 5.000 volts. II. DEMUX BOARD ADJUSTMENTS +10 VOLT DAC REFERENCE ADJUSTMENT (4-1/2 DIGIT DVM REQUIRED) Attach the DVM positive lead to the 1. P518 side of R5 on the DMUX board. 2. Adjust R4 on the DMUX board for 10.000 volts. DAC ZERO OUTPUT ADJUSTMENT 1. Attach the plus side of the DVM probe to the far side of R67 on the DMUX board. the 16' octave switch of 2. Depress OSCILLATOR 1. 3. Adjust R10, (DAC ZERO trim) on the DMUX board for 0.000 volts. DAC FULL SCALE ADJUSTMENT (4-1/2 DIGIT DVM REQUIRED) the 2' OCTAVE switch OD 1. Depress OSCILLATOR 1. 2. Adjust R8, the DAC FULLSCALE trim on the DMUX board to 10.000 volts. III. PRELIMINARY OSCILLATOR TUNING FRONT PANEL SET-UP 1. Attach the DVM positive lead to the wiper of the TUNE pot and set the TUNE pot for 0.00V +/- 10mV. 2. Set up FRONT PANEL controls in Fig. 1. 3. Enter POLYPHONIC KEYBOARD MODE I by depressing "KB MODE", "1" and ENTER. 4. Electrically center Frequency 2 and 3 by depressing "C", *5* 3 Frequency ENTER. 5. Defeat AUTOTUNE by depressing "C", "6" & ENTER. 6. Remove keyboard from unit but do not keyboard wire harness. disconnect FOR ADJUSTMENTS PRELIMINARY IV. CONTOUR/GLIDE 1. Attach DVM positive lead to the U2, Pin 7 side of R56 on the CONTOUR/GLIDE board. 2. Depress "MONO" button to turn it ON. the lowest note on the 3. Depress keyboard. 4. Adjust R53 for 0.000 volts. 5. Depress "MONO" button to turn it OFF. 6. Hold highest note on keyboard and depress and release "HOLD" button. 7. Release highest note. 8. Adjust R60 (TRANSPOSE SCALE I) on CONTOUR/GLIDE board for 0.000 volts. 9. Depress "HOLD" button to turn OFF. 10. Repeat Step 2 thru 9 if necessary to achieve 0.000 volts with no further V. PRELIMINARY ADJUSTMENTS FOR COMMON ANALOG DVM to Pin 7 on U15 on the 1. Attach COMMON ANALOG board. 2. Adjust R102 for 0.000 Volts. 3. Attach DVM to U16 Pin 7. 4. Adjust R111 for 0.000-Volts. 5. Attach DVM to U17 Pin 7. 6. Adjust R123 for 0.000 Volts. 7. Depress "MONO" switch to turn in ON. 8. Hit highest note on keyboard. 9. Adjust R136 for 4.708 volts with a 4-1/2 digit DVM. 10. Attach DVM to U16 Pin 7. Adjust R120 for 4.708 volts with a 11. 4-1/2 digit DVM. 12. Attach DVM to U15 Pin 7. 13. Adjust R107 for 4.708 volts with а 4-1/2 digit DVM. 14. Depress "MONO" button to turn it OFF. 15. Depress 2' range on all OSCILLATORS and hit highest note on keybaord. 16. Adjust R104 for 2.828 volts with a 4-1/2 digit DVM. 17. Attach DVM to U16 Pin 7. 18. Adjust R114 for 2.828 volts with a 4-1/2 digit DVM. 19. Attach DVM to Ul7 Pin 7. 20. Adjust R125 for 2.828 volts with a 4-1/2 digit DVM. 21. Set all OCTAVE switches to 4'. VI. FILTER TUNING RANGE EMPHASIS AND FILTER SCALE, ADJUSTMENT 1. Set FRONT PANEL controls as in Fig. 2. Attach 400F A.C. voltmeter or 2. equivalent, Strobe tuner and oscilloscope to R143 on VOICE CARD 1 (A VOICE). 3. Defeat VOICE CARDS 2 through 6 (B-F). 4A. Press "C", "4" and ENTER. 4B. The display will show "DEFEAT". 4C. Press "2" (for VOICE B) and ENTER. 4D. Repeat steps 4A through 4C for VOICES through six. Substitute the three appropriate voice number in Step 4C. 5. Attach DVM to wiper of VCF CUTOFF potentiometer. 6. Adjust control for 5.00 volts. 7. Depress and hold low C on keyboard. Adjust EMPHASIS trim R153 for +10dBm 8. 6.9Volts peak-to-peak). (2.45Volts RMS, BALANCE for EMPHASIS 9. Adjust symmetrical sine wave. 10. Adjust FILTER RANGE trim R164 for E660Hz. 11. Depress and hold C3 on keyboard. 12. Adjust FILTER SCALE R167 for E2640Hz. 13. Depress and hold low C and repeat steps 10 through 12. 14. Repeat process for all other VOICE CARDS defeating the appropriate unused voices as in Step 4. VII. VCA BALANCE ADJUSTMENT 1. Attach Hewlett Packard 400F A.C. voltmeter or equivalent to R143 on Voice Card 1. 2. Set up FRONT PANEL controls in Fig. 3. 3. Depress and release any note on the keyboard. 4. Adjust VCA trim R140 for minimum thump on A.C voltmeter.

5. Repeat for all other VOICE CARDS.

adjustments.

VIII. MAIN OSCILLATOR TUNING

NOTE: ------NOTE: POWER SUPPLY and DMUX board adjustments must be verified with a 4-1/2 digit DVM before tuning is attempted. Set up FRONT PANEL controls as in Figure 3 and: 1. Attach Strobe tuner to the PULSE output of OSCILLATOR 1, VOICE CARD 1 at U3 Pin 1. 2. Defeat all VOICE CARDS except VOICE 1 (See Filter Tuning, Step 4, for procedure). 3. Depress low A. 4. Adjust R2 (OSC. 1 RANGE) for A220. 5. Depress A3, two octaves up. 6. Adjust R12 (OSC. 1 SCALE) for A880 (see "Overshooting" note above).
7. Repeat Steps 3 through 6 until a perfect 2 octave span is achieved. 8. Depress high A on the keyboard. 9. Adjust R10 (OSC. 1 HI END) for A3520. 10. Repeat Steps 3 through 9 until a perfect 5 octave span is achieved. 11. Repeat Steps 3 through 10 for OSCILLATOR 2 using junction of U7 Pin 1 for the Strobe tuner. Adjust R33 for A220, R44 for A880 and R42 for A3520. 12. Repeat Steps 3 through 10 for OSCILLATOR 3 using junction of U10 Pin 1 for the Strobe tuner. Adjust R75 for A220, R87 for A880 and R78 for A3520. 13. Repeat Steps 2 through 12 for VOICE CARDS 2 through 6 defeating appropriate unused voice cards in Step 2. 14. After all VOICE CARDS have been tuned, hit Low A and check the frequency of each OSCILLATOR on each VOICE CARD and adjust the appropriate range trim to A220, if necessary. 15. Enable all six voice cards by pressing "C", "4", ENTER, ENTER. IX. MONOPHONIC SCALING ADJUSTMENT ON COMMON ANALOG BOARD 1. Attach Strobe tuner to OSCILLATOR 1 VOICE CARD 1 at U3 Pin 1. 2. Depress "MONO" button to turn it on. 3. Depress low A on keyboard. 4. Adjust OSCILLATOR 1 OFFSET R102 for A220. 5. Depress A3 on keyboard. 6. Adjust OSCILLATOR 1 SUM for A880. 7. Repeat Steps 3 through 6 until a perfect 2 octave span is achieved. 8. Repeat Steps 3 through 7 for OSCILLATOR 2 (U7 Pin 1) and OSCILLATOR 3 (U10 Pin 1). 9. Depress "MONO" button to turn it OFF. 10. Attach Strobe tuner to OSCILLATOR 1 VOICE CARD 1 at U3 Pin 1. 11. Depress A2 six times. 12. Depress 16' OCTAVE range on each OSCILLATOR. 13. Adjust OSCILLATOR 1 Offset for All0. Depress 2' OCTAVE switch for 14. OSCILLATOR 1.

15. Adjust OSCILLATOR 1 OCTAVE trim R104 for A880. 16. Repeat Steps 12 through 15 as necessary until a perfect 3 octave span is achieved. 17. Repeat Steps 12 through 16 for OSC2 (U7 Pin 1) and 3 (U10 Pin 1). 18. Press "AUTOTUNE" button and the display will show "6 TUNED" after about Six seconds. Χ. L.H.C. OCTAVE TRANSPOSE SCALE ADJUSTMENT 1. Attach Strobe tuner to OSCI Voice 1 (U3 Pin 1). 2. Set OCTAVE switch for OSC1 to 4' range. 3. Depress Low A 220Hz. Depress "-1" switch on LEFT HAND 4. CONTROLLER. 5. Adjust the OCTAVE TRANSPOSE trim R32 for All0. "0" switch on 6. Depress LEFT HAND CONTROLLER. XI. MODULATION OSCILLATOR RANGE AND SCALE 1. Attach a Time Interval Counter or Scope to the junction of R181, R182 and R183 on the COMMON ANALOG board. 2. Turn the MODULATION RATE Control fully counter-clockwise. Adjust R198 for a time period of 10.0 seconds. 3. Turn the MODULATION RATE Control fully clockwise. Adjust R200 for a time period of 10 milliseconds. XII. PITCH WHEEL OFFSET ADJUSTMENT 1. Attach DVM probe to wiper of PITCH WHEEL. 2. Loosen PITCH WHEEL setscrew and mechanically adjust PITCH WHEEL pot shaft to achieve 0 volts +/-.1 volt on wiper if necessary. 3. Tighten setscrew on PITCH WHEEL. 4. Recheck voltage and readjust if necessary. 5. Attach Strobe tuner to OSC1 VOICE 1 (U3 Pin 1). 6. Depress low A. 7. Turn PITCH BEND amount control full, clockwise. 8. Adjust PITCH Offset trim R67 on COMMON ANALOG board for no pitch shift. 9. Turn PITCH BEND AMOUNT fully counter-clockwise. XIII. VOICE MODULATION OFFSET ADJUSTMENTS 1. Turn off all three wave shapes of OSCILLATOR 3 on FRONT PANEL. 2. Set the front panel VOICE MODULATION section controls as follows: OSCILLATOR 3 and FILTER ENVELOPE fully CCW, FREQUENCY 1 button ON and all other VOICE MODULATION buttons off. 3. Set front panel VOLTAGE CONTROLLED FILTER controls all fully CCW. 4. Attach STROBE tuner to OSCILLATOR 1 VOICE CARD 1 (U3 Pin 1).

5. Hit Low A and note the pitch. 6. Turn OSC. 3 control fully CW.

7. Adjust R106 (OSCILLATOR 3 OFFSET) on VOICE CARD for no pitch shift.

8. Turn OSC. 3 control fully CCW.

9. Turn FILTER ENVELOPE control fully CW. 10. Adjust CONTOURED MOD OFFSET trim on CONTOUR/GLIDE BOARD for no pitch shift (R128 VOICE 1, R161 VOICE 2, R190 VOICE 3, R219 VOICE 4, R248 VOICE 5, R277 VOICE 6). 11. Turn FILTER ENVELOPE control fully CCW.

12. Repeat Steps 5 through 11 above for VOICE CARDS 2 through 6 using Pin 1 of U3 on the associated VOICE CARD for the STROBE tuner and the associated offset trim of Step 10.

XIV. FOOT PEDAL INPUT ADJUSTMENT

1. Plug shorting jack into FOOT PEDAL 1. 2. Attach a STROBE tuner to OSCILLATOR 1 VOICE 1 (U3 Pin 1) and turn FOOT PEDAL AMOUNT controls 1 and 2 fully CCW.

3. Depress lowest A on keyboard. 4. Depress FOOT PEDAL PITCH button to turn it ON.

5. Adjust F.P.1 ZERO R8 on COMMON ANALOG board for no pitch shift. 6. Turn FOOT PEDAL AMOUNT 1 to maximum.

7. Adjust F.P.1 OFFSET R3 for no pitch shift.

8. Depress FOOT PEDAL PITCH button to turn it off.

Attach STROBE tuner to OSC2 VOICE 1 9. (U7 Pin 1).

10. Depress FOOT PEDAL OSC2 button to turn it on.

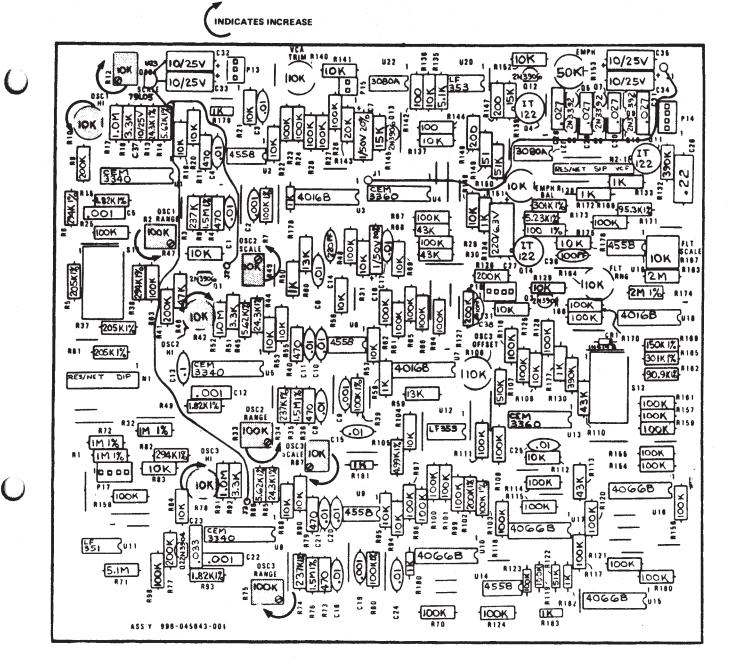
11. Adjust F.P.2 ZERO R17 for no pitch shift.

12. Turn FOOT PEDAL AMOUNT 2 clockwise. 13. Adjust F.P.2 offset R12 for no pitch

shift. 14. Depress FOOT PEDAL OSC2 button to turn

it off.

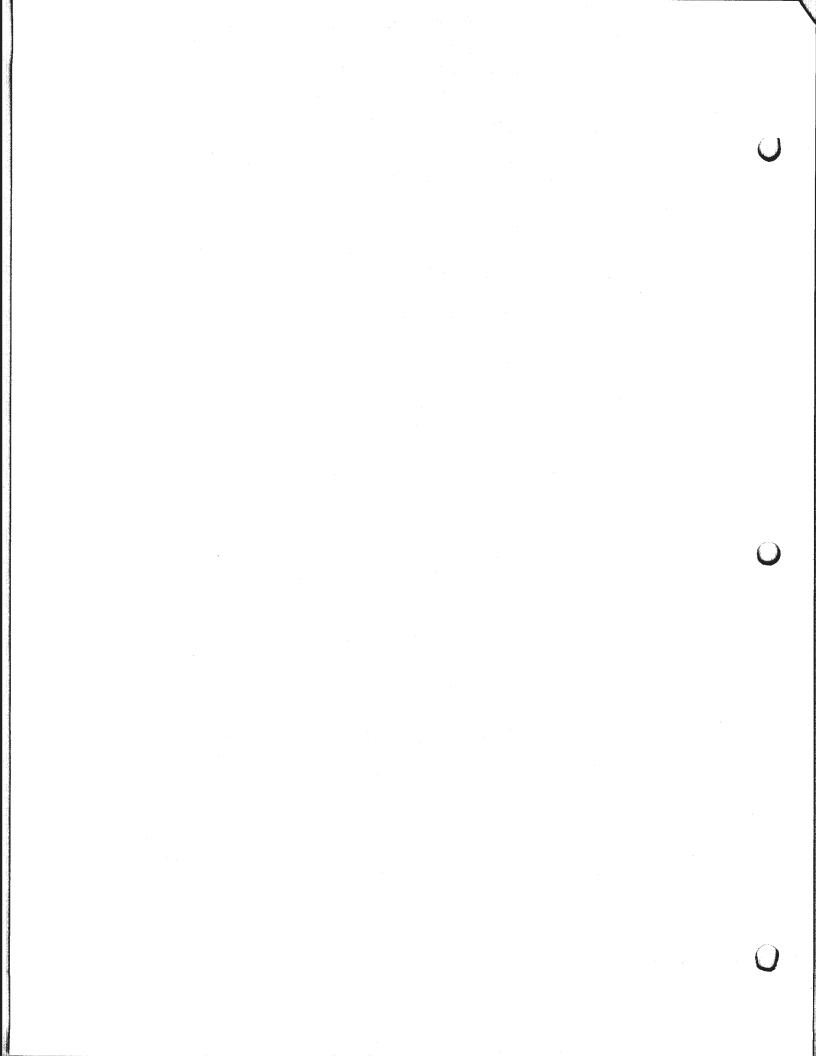
HEXIDECIMAL AUTOTUNE CHART (DECIMAL EQUIVALENTS)

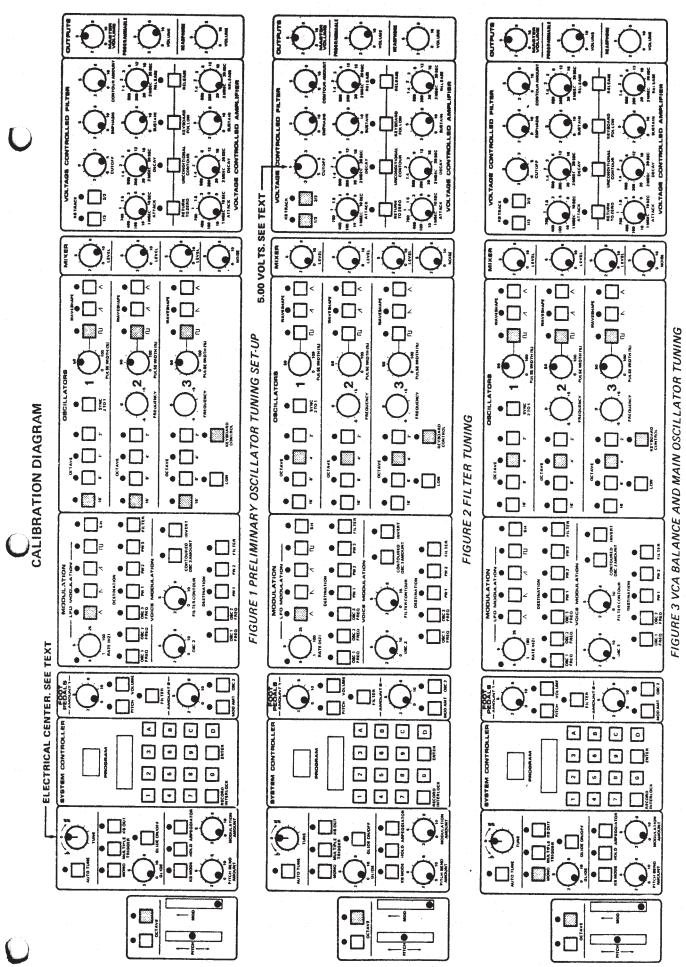

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 19 1A 1B 1C 1D 1E 1F 10 11 12 13 14 15 16 17 18 2D 2E 2F 29 2A 2B 2C 26 27 28 22 23 24 25 20 21 3C 3D 3E 3F 33 36 37 38 39 3A 3B 34 35 30 31 32 48 49 4A 4B 4C 4D 4E 4F 47 44 45 46 40 41 42 43 5C 5D 5E 5F 58 59 5A 5B 53 54 55 56 57 50 51 52 6F 69 6A 6B 6C 6D 6E 67 68 60 61 62 63 64 65 66 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F* 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 80 97 98 99 9A 9B 9C 9D 9E 9F 90 91 92 93 94 95 96 AA AB AC AD AE AF A6 A7 A8 A9 A0 A1 A2 A3 A4 A5 BA BB BC BD BE BF B0 B1 B2 B3 B4 B5 B7 **B**8 **B**9 **B6** CA CB CC CD CE CF **C9** C0 C1 C2 C3 C4 C5 C6 **C7 C**8 D5 D6 D7 D8 D9 DA DB DC DD DE DF D0 D1 D2 D3 D4 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

* NOMINAL ADJUSTMENT VALUE - 7F

NOMINAL CAPTURE RANGE OF THE AUTOTUNE CIRCUIT RANGE. 8F FOR THE 70 HEX TO HEX FROM IS

#




MODIFICATIONS

Update the accompanying schematics before proceeding with repair or calibration.

DMUX BOARD #5 Update pin 16 of 4051 IC's.

Ul0 through Ul7 to +15 volts - current schematics erroneously indicate +5 volts.

Page 48A

MEMORYMOOG

PARTS LIST

SPECIAL NOTE

The following 4558 integrated circuits have been substituted with 1458 integrated circuits on some Memorymoog production runs. Field replacement should be effected with 4558 IC's as noted on schematics.

VOICE CARD, BOARD #1 U2, U6, U9 & U19

Anend ho tene wound

COMMON ANALOG BOARD #2 U2, U9, U10, U15-U21, U23 & U26. CONTOUR/GLIDE BOARD #3 U1, U3, U5, U7, U11, U12, U13, U21, U22, U29, U37, U38, U45, U53, U54 & U61.

4

4

1

		GENEVAL FANTS LIGHT	
REF DES (QTY)	PART NUMBER	DESCRIPTION	TYPE/USE
345 345X	997-045821-001 997-045821-002	MEMORYMOOG, 100-127 VOLTS MEMORYMOOG, 200-254 VOLTS	200100 PRODUCT # 200101 PRODUCT #
(1)	935-044665-101	CASSETTE, FACTORY PROGRAMS	SPECIAL ORDER
(2) (30)	915-041298-002 997-041867-002	KNOB, DUAL CONCENTRIC KNOB ASSEMBLY, POINTER	FREQUENCY 2 & 3 ALL OTHERS
6666	932-045888-100 932-045890-002 932-045890-001 932-045889-001 932-045889-001 932-045889-001 932-045888-001 932-040643-001	PACKING MATERIAL, COMPLETE FOAM, BOTTOM FILLER, PRECUT FOAM, SIDE FILLER, RECTANGULAR FOAM, TOP FILLER, PRECUT CARTON, SHIPPING BAG, POLY PACKING, TUBULAR OWNER/SERVICE MANUAL ASSEMBLY	INCLUDES MANUAL 39.8 X 20 X 1.5" 8.9 X 20 X 1.5" 49.5 X 21 X 9.5" 77.0 X 23 X 01" 77.0 X 23 X 01" 3 KING BINDER
(1)	997-044666-001 997-044667-001	PROM UPDATE KIT (SOFTWARE) MEMORYMOOG ROAD KIT	LATEST VERSION SELECTED PARTS

. . +

		¥ 1 20 *		8 8 10 10	₹ \$_00 ÷	- CNTRS.	
		A X 1/2" A X 5/8" A X 1" A X 1-1/4 8 -32		6 X 1/4 6	-32 x 5/8 0-32 x 3/ /8 x 5/8" 6 x 1/4" -32 x 5/8		
		BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK BRACK BLACK			۵. د د	NTE-N-LK HSG. 15 5 SERTES 5 SERTES 5 SERTES 5 22AMG 3 7 22AMG 3 7 22AMG 3 7 22AMG 4 7 22AMG 4	222MG 2 222MG 4 222MG 4 222MG 5 222MG 7 222MG 5 222MG 5 222MG 6 222MG 6 2222MG 6 2220MG 6 222MG 6 2222MG 6 2222MG 6 2222MG 6 222MG 6 222MG 6 222MG 6 222MG 6 222MG
		APPING 175 APPING APPING SPRING SPRING	LOCK NICKEL FLAT NICKEL LOCK INTERNAL BLACK OXIDE	SCREW, SELF-TAPPING NICKEL WASHER, LOCK INTERNAL TOOT SCREW, MACHINE BLACK NUT, HEX KEPS BLACK SCREW, MACHINE CADMIUM NUT, HEX KEPS	SCREW, MACHINE CADMIUM SCREW, MACHINE FLAT HD OVERLAY, MOOG LOGO WASHER, INSULATED FIBRE WASHER, FLAT SPACER, ALUMINUM SCREW, MACHINE BLACK	CONTACT UNIV. MATE-W-LK 045 SQ.SOCKET HSG. 1 16 PIN HSG. 045 SERIES 16 PIN HSG. MOLEX MAL, CRIMP MOLEX NAL, CRIMP MOLEX CIS CRIMP SOCKET CIS CRIMP SOCKET CIS KEYING PLUG MTA HOUSING RED 22AMG MTA HOUSING RED 22AMG MTA HOUSING RED 22AMG MTA HOUSING RED 22AMG MTA HOUSING RED 22AMG	HOUSING RED HOUSING RED
		SCREW, SELF TA SCREW, 165/.1 SCREW, 165/.1 SCREW, SELF TA SCREW, SELF TA SCREW, SELF TA WASHER, LOCK S LUG, CRIMP NUT, HEX ZINC BUMPER, RUBBER		DEREW, DELF-TAPPING WASHER, LOCK INTERNA SCREM, MACHINE BLACK NUT, HEX KEPS BLACK SCREM, MACHINE CADMI NUT, HEX KEPS	SCREW, MACHINE CADI SCREW, MACHINE FLA SCREW, MACHINE FLA SCREW, MACHINE LAG MASHER, INSULATED WASHER, FLAT SPACER, ALUMINUM SCREW, MACHINE BLA	CONT ACT, 4 CT, 16 CIS CIS CIS CIS CIS MTA MTA MTA MTA	MTA MTA MTA MTA MTA MTA MTA MTA MTA MTA
		811-040039-008 903-045216-001 811-050039-016 811-050039-016 811-050039-020 904-041395-002 911-040189-002 801-055446-000 916-045163-001	904-040495-021 904-042026-001 902-040504-007 904-040507-015 904-040507-020	904-040455-016 904-023039-006 806-023039-006 806-055039-005 802-055449-000	806-055032-010 906-065232-006 913-040328-001 904-041546-003 904-041309-007 973-040609-303 973-040609-303 806-045039-010	910-041316-001 906-040392-001 910-040393-001 910-045921-016 910-040308-001 910-040308-001 910-045895-003 910-045895-003 910-045895-004 910-045895-004	910-045895-004 910-045895-004 910-045895-006 910-045895-006 910-045895-007 920-045895-007 910-045895-007 910-045895-007 910-045895-007 910-045895-005 910-045895-005 910-045895-005
					806-05 806-06 913-04 904-04 904-04 904-04 803-04 805-04		باست. ور. العالي ور.
		(3) (110) (111) (110) (1	(12) (16) (18) (18) (18)	(10) (2) (8) (8) (4)	9959 59	(1) (1) (1) (1) (14) (14) (14) (14) (14)	S164-F S164-F S24-F S25 S26 S27 S28 S28 S28 S28 S28 S28 S28 S28 S28 S28
		1	END CAP END CAP END CAP SUPPORT	15HED		INSULATOR	
S LIST	/use	5.1" S.1" E PA YBOA		APLE UNFINSHED Maple Maple Maple Ote		KD .	5/16" OD 3/4" OD 2.4" OD 2.4" X 2.4" X 1.4" X 3/4" X 3/8" X 3/8"
PARTS LI	TYPE/USE	W W DDD	88	1 " MAPLE 0 3/8" MAP 3/8" MAP 3/8" MAP 3/8" MAP		SIDE R SIDE SIDE TE VOICE CA	6 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
SIS		INSULATOR, FISH PAPER END CAP, LEFT HAND ALUMINUM END CAP, RIGHT HAND ALUMINUM LOGO, MEMORYMOOG ALUMINUM LOGO, MEMORYMOOG ALUMINUM COVER PLATE ALUMINUM HOUSING, CABINET COMPLETE FRONT PANEL, ALUMINUM BASE, ALUMINUM STIFFENER, BASE ALUMINUM	BRACKET 3/4 X 13/16 X 5/8 BRACKET 1 X 1 X 5/8 BRACKET 1 X 5/16 X 5/8 DOUBLER PLATE, BASE SIDE PANEL, LEFT SIDE WOOD SIDE PANEL, RIGHT SIDE WOOD TRIM, BLOCK HOUSING WOOD	CENTER BRACE WOOD FRONT KEYBOARD WOOD FRIGHT SIDE WOOD LEFT SIDE WOOD LEFT C TO C	U	SPRING OVERLAY, CONTROLS LEFT SIDE OVERLAY, CONTROLS CENTER OVERLAY, CONTROLS RIGHT SIDE OVERLAY, LEFT HAND CONT. VINYL TIP 1/8 X 3/8 WHITE VINYL TIP 1/8 X 3/8 WHITE KNOB, DUAL CONCENTRIC KNOB, POINTER ASSEMBLY	NUT, HEX KEPS ZINC WASHER, INSULATED FIBRE WASHER, INSULATED FIBRE STANDOFF, HEX ZINC STANDOFF, HINGED CADMIUM STANDOFF, HINGED CADMIUM STANDOFF, HEX ZINC STANDOFF, STANDOFF, HEX ZINC STANDOFF, HEX ZINC STANDOFF, HEX ZINC STANDOFF, STANDOFF, HEX ZINC STANDOFF, STANDOFF, STANDOFF, HEX ZINC STANDOFF, STANDOFF, STANDOFF, HEX ZINC STANDOFF, STANDOFF, STAND
ND CHAS	TION	INSULATOR, FISH PAPER END CAP, RIGHT HAND A END CAP, RIGHT HAND A LOGO, MEMORYMOOG ALUM COVER PLATE ALUMINUM FOULT PANEL, ALUMINUM FRONT PANEL, ALUMINUM BASE, ALUMINUM STIFFENER, BASE ALUMI	BRACKET 3/4 X 13/16 BRACKET 1 X 1 X 5/8 BRACKET 1 X 1 X 5/16 X BRACKET 1 X 5/16 X DOUBLER PLATE, BASE SIDE PANEL, LEFT SI SIDE PANEL, LEFT SI STRIM, BLOCK HOUSING	CENTER BRACE FRONT KEYBOAR RIGHT SIDE WO LEFT SIDE WO ARD, C TO C		SPRING OVERLAY, CONTROLS LEFT OVERLAY, CONTROLS LEFT OVERLAY, CONTROLS RIGH OVERLAY, LEFT HAND CON VINYL TIP 1/8 X 3/8 WH VINYL TIP 1/8 X 3/8 WH VINS, PUAL CONCENTRIC KNOB, PUAL CONCENTRIC	NUT, HEX KEPS ZINC WASHER, INSULATED FIBRE WASHER, INSULATED FIBRE STANDOFF, HIXGLATED FIBRE STANDOFF, HINGED CADMIU STANDOFF, HINGED CADMIU STANDOFF, HIXZ ZINC STANDOFF, HEX ZINC STANDOFF, HEX ZINC STANDOFF, HEX ZINC STRUPSF, HEX ZINC SCREW, SEMS PAN HEAD BLA SUPPORT, PC BOARD SCR M SCREW, SELF TAPPING NIC WASHER, LOCK SPHING ZINC
2	<u>à.</u>	FAANA DAAN					
CABINET AND CHASSI	DESCRI PTION	INSUL END C END C END C LOGO, COVER HOUSI FRONT BASE, STIFF	BRACKE BRACKE BRACKE BRACKE DOUBLE SIDE P SIDE P TRIM,	TRIM, CEN TRIM, FRO TRIM, RIG TRIM, LEF TRIM, LEF KEYBOARD,		SPRING OVERLAY, OVERLAY, OVERLAY, VINYL TIF KNOB, DUA	NUT, HEX K WASHER, IN WASHER, IN WASHER, FL STANDOFF, STANDOFF, STANDOFF, STANDOFF, STANDOFF, STANDOFF, STANDOFF, STANDOFF, STANDOFF, SCREW, MAC
				TRIM, TRIM, TRIM, KEYBC			· · · · ·
MEMORYMOOC CABINET A	PART NUMBER DESCRI	908-045986-001 INSUL 962-045827-001 END CL 962-045827-002 END CL 962-045832-001 LOGO, 962-045832-001 HOUSI 967-045822-001 HOUSI 967-045823-001 BASE, 967-045825-001 BASE, 967-045825-001 BASE,		TRIM, TRIM, TRIM, KEYBC			802-045322-000 NUT, 904-041806-010 WASHE 973-040508-063 STAND 973-040789-003 STAND 973-040789-004 STAND 973-040517-001 STAND 973-040517-001 STAND 973-040517-004 STAND 973-045039-004 SCREW 812-045039-006 SCREW 812-045039-006 SCREW 973-045126-001 SUPPOI 973-041395-009 WASHE

0

 \bigcirc

O

Page 50

.

 HOUSING RED 22AMG 4 PIN HOUSING RED 22AMG 4 PIN HOUSING RED 22AMG 6 PIN HOUSING RED 22AMG 7 PIN HOUSING RED 22AMG 6 PIN 	HOUSING RED 22AMGB PINI. ClSOCKET HOUSINGB PINI. ClSOCKET HOUSINGB PINI. ClHOUSING RED 22AMGB PINI. ClHOUSING RED 22AMGB PINI. ClHOUSING RED 22AMGB PINI. ClSOCKET HOUSINGB PINI. ClHOUSING RED 22AMGB PINI. ClSOCKET HOUSINGB PINI. ClHOUSING RED 22AMGB PINI. ClHOUSING RED 22AMGA PINI. ClHOUSING RED 22AMGA PINHOUSINGHOUSING RED 22AMGA PINHOUSING RED 22AMGA PIN	CABLE ASSY, 16 PIN DIP 54.5" 7 CABLE ASSY, 16 PIN DIP 13.0" 2 CABLE ASSY, 16 PIN DIP 11.0" 2 CABLE ASSY, 16 PIN DIP 12.5" 2 CABLE ASSY, 16 PIN DIP 12.5" 2 CABLE ASSY, 16 PIN DIP 12.55" 2 CABLE ASSY, 16 PIN DIP 11.0" 2 CABLE ASSY, 16 PIN DIP 22.0" 2
СОИИИ, МТА СОИИИ, МТА	СОИИ, МТА СОИИ, СТБ СОИИ, СТБ СОИИ, СТБ СОИИ, МТА СОИИ, МТА СОИИ, МТА СОИИ, МТА СОИИ, МТА СОИИ, МТА СОИИ, МТА СОИИ, МТА СОИИ, МТА	R1880N C R1880N C
910-045895-004 910-045895-004 910-045895-004 920-045895-007 920-045895-006 920-045895-006 910-045895-006 910-045895-006 910-045895-006 910-045895-006 910-045895-006 910-045895-006 910-045895-006	910-045895-008 910-045895-008 910-045895-008 910-045895-008 910-045895-008 906-040298-008 910-045895-008 910-045895-002 910-045895-002 910-045895-002 910-045895-002 910-045895-003 910-045895-003 910-045895-003 910-045895-003 910-045895-003 910-045895-003 910-045895-003	994-045350-101 994-045350-102 994-045350-008 994-045350-008 994-045350-001 994-045350-001 994-045350-001 994-045350-001 994-045350-001 994-045350-001 994-045350-001 994-045350-001
S17A-F S17A-F S27 S25 S26 S28 S28 S28 S28 S28 S28 S28 S28 S28 S28	548A-8 564 564 564 554 554 5511 55112 55113 55113 55113 55113 55114 55113 55114 55113 55114 55113 55116 55119 555119 55512 55525 55512 55525 55525 55525 55525 55555555	P11-P53 P12-P54 P21-P55 P22-P56 P32-P57 P33-P59 P33-P59 P33-P52 P44-P73 P44-P73 P46-P71 P61-P75 P61-P75

-

SDU14 SDU14

HARNESSING ASSEMBLYS Ref des Part Number (OTY)	DESCRIPTION	N TYPE/USE
547-J14- 994-045894-972	HARNESS, (CASSETTE INTERFACE
275-BD8 994-045894-975 276-BD8 994-045894-945 574-BD10 994-045894-946	HARNESS, HAR	DISPLAY BOARD POWER DISPLAY BOARD DATA LEFT HAND CONTROLLER
		RSC ANALOG BOARD
542-5517 994-045894-971	HARNESS,	DEMUX/DIGITAL BOARD CLOCK
J11 527-592 994-045894-966 51-541-	HARNESS,	TO BACK PANEL JACKS
S29-S15 994+045894-960	HARNESS,	SHIELDED, VOICE AUDIO
S516-S25 994-045894-964	HARNESS,	POWER AND DEMUX TO LSC/RSC
S77-564 S36A-F 994-045894-961 S16A-F	HARNESS,	KBRD CV AND ADSR TO VOICE CARDS
S35A-F S511A-F 994-045894-962 S17A-F	HARNESS,	AUTOTUNE AND OSC3 ENABLES
S515A-F S519-S31 994-045894-968 S512 994-045894-978	HARNESS, HARNESS,	POWER TO CONTOUR/GLIDE BOARD CHAIN, 7.5V, ETC. TO VOICE CARDS
994-045894-979	HARNESS,	CHAIN, 15V AND GROUND TO VOICE CARDS
994-045894-973	HARNESS,	KEYBOARD TO DIGITAL BOARD
528-BD5 994-045894-967	HARNESS,	DEMUX AND MISC. TO COMMON ANALOG
PADS 1-4 SI31- 994-045894-974 P510	HARNESS,	POWER TO DEMUX BOARD
PADS 1-15 PADS 1-15 S34-S91 994-045894-969 S513	HARNESS,	POWER AND ADSR TO JACKS
MEMORYMOOG	PACKING MATERIAL	VTERIAL
DES PART NUMBER Y)	DESCRIPTION	TYPE/USE
932-045890-002 932-045890-001 932-045889-001 932-045888-001 932-040643-001	FOAM, BOTTOM FILLER FOAM, SIDE FILLER FOAM, INSERT CARTON, SHIPPING BAG, POLY PACKING	 BOTTOM FILLER SIDE FILLER INSERT INSERT DOLY PACKING

0	TYPE/USE	CEE-22 EXPORT 115V 220V EXPORT 220V EXPORT EXPORT 250V/8A ON/OFF	120 VOLT DOMESTIC 4-40 X 3/8" LB 1.25AMP FUSE COVER	220 VOLT EXPORT 4-40 X 3/8 5 X 20MM 800MA 5 X 20MM 315MA 5 X 20MM 3.15A FUSE COVER FOURE D	PARTS LIST TYPE/USE	10-32 X 5/8" 10-32 X 5/8" 50/60 HERTZ
POWER CONNECTIONS	DESCRIPTION	RECEPTACLE, POWER LABEL, SAFETY GROUND LABEL, VOLTAGE LABEL, VOLTAGE LABEL, VOLTAGE TRANSFORMER CORD, POWER 3 CONDUCTOR CORDS, POWER 3 CONDUCTOR CORDSET, EUROPEAN SWITCH, ROCKER, DPST	FUSE PLATE ASSEMBLY Screw, Pan Head Black FUSEHOLDER, SINGLE 220 TAB FUSE, SLO-BLO 3AG 250V Plate, Aluminum	FUSE PLATE ASSEMBLY SCREW, PAN HEAD BLACK FUSEHOLDER, CLIP TYPE FUSE,TIME LAG FUSE,TIME LAG FUSE,TIME LAG PLATE, ALUMINUM SHIELD, FISH PAPER	PAN ASSEMBLY Description	NUT, HEX KEPS CADMIUM SCREW, MACHINE CADMIUM MOUNT, VIBRATION RUBBER FAN MOTOR, 115VAC FAN BLADE BRACKET, FAN PEM INSERTED
MENORYMOOG	PART NUMBER	910-042913-001 913-04409-001 913-04409-001 913-045130-006 913-045182-001 954-045882-001 957-0413400-001 957-042800-001 960-042800-001	997-045885-001 806-023039-006 906-041331-006 939-041620-006 939-041620-006	997-045885-002 806-0239-005 906-042911-003 939-044094-013 939-044094-011 939-044094-002 952-045931-001 969-045948-001	MEMORY MOOG PART NUMBER	802-065542-000 806-065032-010 916-045961-001 935-045940-001 935-045940-002 957-045941-901
	REF DES (QTY)	33333	<u> 222</u> 2	<u> 2000</u>	REF DES (OTY)	<u> </u>

	NEMORYNOOG	POWER SUPPLY BOARD	PARTS LIST		MEMORYMOOG	Contour/GLIDE BOARD	PARTS LIST
REF DES (OTY)	PART NUMBER	DESCRIPTION	TYPE/USE	REF DES (OTY)	PART NUMBER	DESCRIPTION	TYPE/USE
	906-045188-014 906-045188-014 903-042676-001	SOCKET, IC DIP 14 PIN SOCKET, TIP TRANSISTOR SCREW, SELF TAPPING	4-40 X 1"	(28) (21) (14)	906-045188-008 906-045188-014 906-045188-016	SOCKET, IC DIP .3" CWTRS. SOCKET, IC DIP .3" CWTRS. SOCKET, IC DIP .3" CWTRS.	8 PIN 14 PIN 16 PIN
	968-045928-001	MASHER, SHOULDER INSULATED MASHER, SHOULDER INSULATED HEATSINK, COUPLER PLATE		P36 P34 P35	910-040299-002 910-040299-003 910-040299-005 910-040299-005		
	910-042533-015 910-042531-003 910-042531-003 910-042531-003	HEADER, 156" CTRS. HEADER, 156" CTRS. HEADER, 156" CTRS. HEADER, 156" CTRS.	15 PIN NON-LOCKING 3 PIN LOCKING 3 PIN LOCKING 3 PIN LOCKING	P31	910-040299-007 910-040299-008	CIS .1.	7 DIN 8
	991-041484-001 991-041484-001 991-041484-001	PAGE RE	23C 23C	1222233	991-041146-001 991-045870-001 991-041146-001 991-041146-001 991-041146-001	IC, DUAL OP AMP IC, DUAL VC AMPLIFIER IC, DUAL OP AMP IC, DUAL OP AMP IC, DUAL OP AMP IC, NUAL OP AMP	4558 CEM3360 4558 4558 4558 CEM3360
	991-042663-001 991-041056-001 991-041056-001 991-042663-001 991-042663-001 991-042663-001 991-042663-001	TRANSISTOR, NPN 40V/6A TRANSISTOR, NPN 60V/2A TRANSISTOR, NPN 40V/6A TRANSISTOR, NPN 40V/6A TRANSISTOR, NPN 40V/6A TRANSISTOR, NPN 40V/6A TRANSISTOR, NPN 60V/2A	TIP41 MPS U05 T1P41 T1P41 T1P41 T1P41 MPS U05		991-041146-001 991-04187-001 991-041887-001 991-041887-001 991-041186-001 991-041146-001	DUAL OF DUAL OF CMOS QUA DUAL OF DUAL OP DUAL OP	
CRI-CR4 CR5 CR6 CR6 CR7 CR1 CR1 CR1 CR1 CR1 CR1 CCR3 CCR1 CCR1	919-041157-001 919-042155-002 919-042019-001 919-042019-001 919-041157-001 919-041255-002 919-042019-001 919-042019-001	RECTIFIER ZENER RECTIFIER RECTIFIER ZECTIFIER RECTIFIER RECTIFIER		0115 0116 0118 0120 0220 0220 0220	991-043554-001 991-043554-001 991-043552-001 991-045868-001 991-045868-001 991-045868-001 991-041146-001	LISTITL QUAD 2 LISTITL QUAD 2 VC ENVELOPE G DUAL VC ENVELOPE G DUAL VC AMPLI DUAL OP AMP	<u>د</u>
	919-041157-001 919-041157-001 919-041157-001 919-041157-001 919-041255-002 919-042019-001 919-042019-001	RECTIFIER RECTIFIER RECTIFIER RECTIFIER SENER RECTIFIER RECTIFIER		U23 U25 U25 U25 U27 U28 U28 U31	991-042388-001 991-04298554-001 991-042988-001 991-042988-001 991-0429870-001 991-042388-001 991-042388-001 991-043588-001	DUAL VOLTAGE COMPAI LETTL QUAD 2 INPUT LETTL QUAD 2 INPUT DUAL BIFET OF AMP VC ENVELOPE GENERAT DUAL VC AMPLIFIER DUAL OPAN L VOLTAGE COMPAI LETTL QUAD 2 INPUT	
	947-042020-475 947-04209-042 945-040209-043 945-040209-043 945-040209-037 945-040209-037 945-040209-037 947-042020-071	CERANIC CERANIC ALUMINUM ALUMINUM ALUMINUM ALUMINUM CERANIC CERANIC		033 033 033 034 035 038 038 038 038	991-043532-001 991-0435532-001 991-043868-001 991-045868-001 991-045868-001 991-041146-001 991-041146-001 991-04354-001		-
	925-042526-001 925-042526-001 925-042526-001	POT, TRIM CERMET POT, TRIM CERMET POT, TRIM CERMET	IK +15V ANJ IK -15V ANJ IK +5V ANJ IK +5V ANJ	041 042 042 043 043 045 047 048	991-045968-001 991-045968-001 991-045868-001 991-045870-001 991-04146-001 991-042388-001 991-043554-001 991-043532-001	VC ENVELOPE 6 DUAL BIFET OP VC ENVELOPE G DUAL VC AMPLI DUAL VC AMPLI DUAL VOLTAGE LSTTL QUAD 2 LSTTL QUAD 2	

í.

																															<	8	υ	۵	ŝ	<u>6</u> .,	
Ō		3.3 NFD .022 UFD .047 UFD	.01 UFD .01 UFD	022 UFD	.022 UFD		.022 UPD								.01 UFD			.022 UFD		3.3 NFD .022 UFD	047	.01 UFD	UF	<u>e</u> e	ه دغر	100K,15 (TO .018)		100K,1%	TRNSPSE	NONO	50K VCF CNTR OFFSET	VCF CNTR OFFS	VCF CNTR OFFS	VCE MOD CNTR VCF CNTR OFFS		50K VCE MOD CNTR F 50K VCF CNTR OFFSET	
	POLYESTER BOX POLYESTER BOX POLYESTER BOX CERAMIC TUBULAR	, POLYESTER BOX , POLYESTER BOX	, CERAMIC TUBULAR , CERAMIC TUBULAR BOLVESTER BOX	, POLYESTER BOX	POLYESTER BOX	, CERAMIC TUBULAR	POLYESTER BOX	CERAMIC TUBULAR	CERAMIC TUBULAR	, POLYESTER BOX	, POLYESTER BOX	TOR, CERAMIC TUBULAR	TOR, POLYESTER BOX		CERAMIC TUBULAR	POLYESTER BOX	, POLYESTER BOX	POLYESTER BOX	CERAMIC TUBULAR	POR, POLYESTE	FOR, POLYESTI	TOR, CERAMIC TUBULAR TOR, CERAMIC TUBULAR	, CERAMIC	STORS, MATCHED PAIR	CARBON	STORS, MATCHEU PAIN STORS, MATCHED PAIR				TRIM CARBON	MIN	C. 20: :	TRIM CARHON TRIM CARBON	TRIM CARBON TRIM CARBON	TRIM CARBON TRIM CARBON	ΣE	
	223 473 103	-332 -223 -473	I-103 CAPACITOR I-103 CAPACITOR I-203 CAPACITOR	4 m m		9/8-4/3 CAPACITOR 011-103 CAPACITOR 070-222 CAPACITOR		CAPACI	CAPACI	CAPACI	CAPACI	CAPACI	CAPACI	1978-473 CAPACI	3 CAPACI	2 CAPACI	CAPACI	CAPACI	CAPACI	-332 CAPACI	-473 CAPACI	-103 CAPACI -103 CAPACI	-102 CAPACI		POT,	RESI	RESI	RESIS	POT,	POT,	5-003 POT	5-003 POT.	5-003 POT,	5-003 POT, 5-003 POT,	5-003 POT,	5-003 POT,	
	9999 9949 99499	946-04 946-04 946-04	947-045011-10 947-045011-10	6	946-04		100	46	46	4 6		947-0	946-0	946-0	0-146	946-041	946-04	946-041	946-041 947-045	946	646-04		1 947-04	-2		6[-	-36	6-47 949		7 925	31 925-04027	64 925-04027	90 925-04027 93 925-04027	19 925-040 22 925-040	248 925-04027	77 925-040 80 925-040	
0	2) C47 C48 C49 C50 C50	C51 C52 C53	C54		555			999 2000	C67	C68 C69	50	55	50	C75 C76	5		5V C8	5V C81		5V 50			C91	RI	R2 R2	R18 R29	22	4 4 X	R5 R6	R7 01	R)	I I I I	R) R		R2		
	CEM3310 LF353 (TL07 CEM3310 CEM3360		74LS08 CEM3310 LF353 (TLO7	CEM3360			G. 2N3904		967 6N T	.1 UFD	.10			.01 .01	.1 UFD 1 UFD	R .01 UFD	10 UFD/2	10 UFD/2	۲.	R .01 UFD	.01 UFD	10 UFD/2	10.	3,3 NFD .022 UFD	0.22		3.3	047	10.	3.3 NFD .022 UFD	AR .01	.047	3.3	.047	в. 01 В 01	• "	
	VEI VEI VC	DUAL OP AMP DUAL OP AMP DUAL VOLTAGE COMPARA1	LETTL QUAD 2 INPUT AND VC ENVELOPE GENERATOR DUAL BIFFT OP AMP	VC ENVELOPE GENERATOR	DUAL OP AMP	TJA	TRANSISTOR, NPN SMALL SIG.		DIUDE, SIGNAL	CAPACITOR, POLYESTER BOX	POLYESTE		POLYESTE	CAPACITOR, POLYESTER BOX CAPACITOR, CERAMIC TUBULAR	CAPACITOR, POLYESTER BOX		CAPACITOR, ALUMINUM ELECT.	ALUMINUM	ALUMINUN	CAPACITOR, CERAMIC TUBULAR CAPACITOR ALIMINIM FLECT	, CERAMIC		CAPACITOR, CERAMIC TUBULAR CAPACITOR, CERAMIC TUBULAR			CAPACITOR, POLYESTER BUX CAPACITOR, CERAMIC TUBUL	CAPACITOR, POLYESTER BOX CADACITOR DOLVESTER BOX	POLYEST	CAPACITOR, CERAMIC TUBULAR CAPACITOR, CERAMIC TUBULAR		CERAMIC T	, POLYESTE	CAPACITOR, CERAMIC TUBVEAR CAPACITOR, POLYESTER BOX	CAPACITOR, POLYESTER BOX CAPACITOR, POLYESTER BOX	CAPACITOR, CERAMIC TUBULA CAPACITOR CERAMIC TUBULA	- LL -	
	991-045868-001 IC, 991-042908-001 IC, 991-045968-001 IC, 991-045870-001 IC,				10,		91-041051-002 TRAN		0010 100-5/0190-616	978-104	5011-103 1978-104	-104	978-104										947-045011-103 CAPA 947-045011-103 CAPA			_									103	45011-103	
0	U49 991-(U50 991-(U51 991-(U52 991-(0	6		CR1-CR6 919-0	946		946	946	C7 946-1 C8 947-1									C22 947-1 C23 947-1				C29 946-			C34 946-				C41 946- C42 946-	749 747	5 946 6 946	

	MEMORYMOOG	DIGITAL BOARD					
REF DES (OTY)	NUM	DESCRIPTION	TYPE/USE			-	
	BD3_D45333_000			513	947-045181-104	CAPACITOR MONOLITHIC	.1 UFD
	R06-045309-006	SCREW, MACHINE, RLACK	6-12 3/8"		046-04021-002	TANTALOM	10 UPD/20V
						ALUMENUM FLECT	-
				5		MONOLITHIC	_
							N
	010-00001010		0 D1N				. –
						CEDAMIT TIRULAD	c
				C18			
P4 2	500-667040-016	-T* SID		C19	946-041978-104	PULTESTER BUA	
P47	910-040299-006	CIS .1"		C20	945-044465-003	ALUMINUM ELECT.	
P48A	910-040299-008	CIS .1"		C21-C32	947-045183-104	CAPACITOR, MONOLITHIC	.I UFD
P48B	910-040299-008	CIS .1"	8 PIN				
P49	910-040299-003	HEADER, CIS .1" CNTRS.	3 PIN	111	991-045306-01	IC. MICROPROCCESOR	2-80 CPU
				5	991-045307-001	IIVEPROM 4K BY 8	
					001-045107-001	INFPROM AK BY R	2512
00	906-045188-008	DIP	8 PIN				5525
(10)	906-045188-014	IC DIP .3"	It PIN				61161.0
(15)	906-045188-016	1C DIP .3"	16 PIN	5			CILC'N
121	006-045188-070	IC DID	-	5	100-000-00-000		211610
				10	100-05551-166	CHUS KAR 2A BI 6	ATATTA
				60	991-043555-00T	LSTTL DECODER/DHUX	7415138
	970-99TC+0-976			010	991-045867-001	COUNTER/TIMER	2-80 CTC
(2)	906-045188-040	SOCKET, IC DIP .6" CNTKS.	AU FIN	011	991-043555-001	LSTTL DECODER/DMUX	74LS138
				012	991-043552-001	LETTL QUAD 2 INPUT NOR	74LS02
				013	991-043577-001	LETTL QUAD 2 INPUT NAND	74LS00
BT1	926-045312-001	BATTERY, LITHIUM	3 VOLT	114	991-043553-001	LSTTL HEX INVERTER	74LS04
YI	921-045313-001	CRYSTAL, QUARTZ	4 MEGAHERTZ	015	991-043520-001	CMOS REX SCHMITT TRIG.	401068
Kl	921-045141-001	RELAY, REED SPST	500 OHM COIL	016	991-045299-001	LSTTL DUAL D FLIP/FLOP	74LS74
				017	991-043555-001	LSTTL DECODER/DMUX	74LS138
				018	991-043555-001	, LSTTL DECODER/DMUX	74LS138
01-03	991-041052-001	TRANSISTOR, PNP SMALL SIG	2N3906	019	991-043555-001	LSTTL DECODER/DMUX	74LS138
				070	991-043555-001	IC, LSTTL DECODER/DMUX	74LS138
				U21	991-043553-001	LSTTL HEX INVERTER	74LS04
CRI-CR3	919-041075-001	SIGNAL	1N4148	U22	991-045549-001	LSTTL QUAD 2 INPUT NAND	74LS26
CR4-CR9	919-042019-001	DIODE, RECTIFIER IA/400PIV	IN4004	U2 3	991-042388-001		LF393
				0.24	991-041112-001	IC, VOLTAGE REGULATOR 5V	7 8M0 5C
				U25	991-043532-001		74LS32
C	947-045183-104		.I UFD	026	991-045866-001	IC, CMOS HEX TRI-STATE BUF	45038
C2	947-045183-104		.l UFD	027	991-045866-001	CMOS HEX TRI-STATE BUF	45038
0	947-045183-104	_	.1 UFD	112.8	991-045865-001	LSTTL OCTAL D FLIP/FLOP	74LS377
0	947-045183-104	CAPACITOR, MONOLITHIC		6711	991-045864-001	LETTL OCTAL BUS TRNSCVR	74LS245
S	946-040231-001	CAPACITOR, TANTALIN	1.5 UFD/20V	0110	991-045866-001	CMOS	45038
2	947-045008-100		10 PFD	111	001-042550-001	ICTT DUAL A-BIT CHTD	1012111
80	047-045103-104	MONOI I THIIC		100		I CTTT OCTAL D FLD/FLDD	741.5177
58			01 010	200			741 674
9				6.00			
5	00T-800CH0-/ 16			014	100-55560-166	DECODER/DHUN	1415130
CIO	947-045183-104			035	991-043555-001	, LSTTL DECODER/DMUX	74LS138
CLI	946-041978-104	CAPACITOR, POLYESTER BUX	. 01 UFD				

.

BAL. LINE SCL ZERO OFFSET ZERO OFFSET UFD UFD UFD/25V UFD/25V UFD/25V UFD/25V UFD/25V RATE VOICE F VOICE 1 VOICE UFD UFD NFD UFD UFD UFD UFD UFD FP1 FP2 OCT OSC MHO **FP1** NI NI NI NID NID NID 600 14 POLYESTER BOX CERAMIC TUBULAR CERAMIC TUBULAR CERAMIC TUBULAR MONOLITHIC CERAMIC TUBULAR CERAMIC TUBULAR CERAMIC TUBULAR ALUMINUM ELECT. POLYESTER BOX POLYESTER BOX POLYESTER BOX COLYESTER BOX CERAMIC TUBULAR CERAMIC TUBULAR CERAMIC TUBULAR ALUMINUM ELECT. ALUMINUM ELECT. CERAMIC TUBULAR POLYESTER BOX MONOLITHIC ALUMINUM ELECT. TUBULAR TUBULAR TUBULAR TUBULAR CNTRS. CNTRS. CNTRS. TRANSFORMER, AUDIO DRIVER CNTRS. CNTRS. CNTRS. CNTRS. CNTRS. CNTRS. CERAMIC 1 CERAMIC 1 CERAMIC 1 CERAMIC 1 CERAMIC 1 CARBON CERMET •**T**• CERMET CERMET CERMET CERMET CERMET CERMET 410 CAPACITOR CIS CIS CIS CIS CIS CIS CIS CIS 2222 CAPACITOR, CAPACITOR, CAPACITOR, CAPACITOR, SOCKET, SOCKET, SOCKET, HEADER, HEADER, HEADER, HEADER, HEADER, HEADER, TOC 201 946-041978-473 947-045008-472 947-045011-103 947-045111-103 947-045111-103 947-04511-103 947-045011-103 947-045011-103 947-045011-103 947-04511978-104 945-041978-124 946-041978-123 946-041978-233 946-041978-103 947-045011-103 947-045011-103 947-045011-103 945-044465-003 945-044465-003 910-040299-007 910-040299-006 910-040299-006 910-040299-010 910-040299-005 910-040299-007 906-045188-008 906-045188-014 906-045188-014 925-042389-002 925-040275-003 925-040275-003 925-040275-003 925-040275-003 925-040275-003 925-040275-003 925-042389-002 925-042389-002 925-042389-002 925-042389-012 925-042389-012 925-042389-002 925-042389-002 925-040275-004 925-040275-004 925-040275-004 945-044465-003 947-045008-102 947-045008-102 947-045008-102 947-045008-472 925-042389-012 925-042389-002 945-044465-003 910-040299-006 925-042389-002 925-042389-012 925-040275-004 955-045879-001 925-040275-004 925-042389-002 17) 10) P24 P25 P26 P27 P28 P29 £ I CEM3360 CEM3360 LF353 (TLO72) LM386 4558 4558 CEM3360 741 5837 4558 LF353 (TL072) 40168 NFD UFD/25V NFD UFD UFD UFD UFD UFD/25V UFD/16V **UFD/50V** PARTS LIST TYPE/USE CEM3360 4558 40168 FDH333 FDH333 FDH333 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN4148 IN5237A IN5237A IN5237A IN5237A IN5237A IN5237A IN5237A IN5237A IN5237A 2N3904 2N3906 2N3906 E112 2N3904 2N3906 2N3906 2N3906 40168 1.7 .10 .01 CERAMIC TUBULAR ALUMINUM ELECT. CERAMIC TUBULAR CERAMIC TUBULAR CERAMIC TUBULAR ALUMINUM ELECT. POLYESTER BOX MONOLITHIC ALUMINUM ELECT. ALUMINUM ELECT. SMALL STG. osc AMP AMP AMP AMP DIGITAL NOISE SOURCE DUAL OP AMP DUAL JFET OP AMP CMOS QUAD SWITCH ł 2 3 VOLTAGE CONTROLLED DUAL OP AMP CMOS QUAD SWITCH JUAL OF AMP JAL OF AMP JAL OF AMP JUAL OF AMP JUAL OF AMP DUAL OF AMP SMALL SIGNAL SWALL SIGNAL SWALL SIGNAL SWALL SIGNAL SMALL SIGNAL SMALL SIGNAL SWALL SIGNAL SWALL SIGNAL ZENER 8.2V/500 1 ZENER 8.2V/500 1 ZENER 8.2V/500 1 ZENER 8.2V/500 1 DUAL JFET OP AMP AUDIO OP AMP DUAL OP AMP DUAL OP AMP DUAL OP AMP DUAL VOLTAGE CONT P CONT QUAD SWITCH VOLTAGE CONT VOLTAGE CONT QUAD SWITCH COMMON ANALOG BOARD SIGNAL LOW LEAKAGE LOW LEAKAGE TRANSISTOR, PNP S TRANSISTOR, NPN S TRANSISTOR, NPN S TRANSISTOR, NPN S TRANSISTOR, NPN S TRANSISTOR, PNP S TRANSISTOR, PNP S TRANSISTOR, NPN S DUAL VOLTAGE AMP OP AMP SMALL dО CAPACITOR DESCRIPTION CAPACITOR, OP AMP CMOS DUAL DUAL DUAL DUAL DUAL DUAL DUAL CMOS CMOS DUAL 947-045008-472 945-044665-003 947-045008-472 947-045011-103 947-045011-103 945-04465-002 946-041978-104 947-045183-104 945-044465-003 945-044465-019 991-041051-002 991-041055-001 991-041051-002 991-041052-002 991-041051-002 919-044466-001 919-041075-001 919-041075-001 919-041075-001 919-041075-001 919-041075-001 919-041075-001 919-041075-001 919-041075-001 919-041075-001 919-041075-001 991-041052-002 991-041051-002 991-041052-002 991-041146-001 991-042908-001 991-041087-001 991-042908-001 991-045137-001 991-041146-001 991-041146-001 991-041101-001 991-041087-001 991-041087-001 991-041146-001 991-041146-001 991-041146-001 991-041146-001 991-041146-001 991-045869-001 991-041146-001 991-041087-001 991-041146-001 100-180190-166 991-045870-001 991-045870-001 991-041146-001 991-042016-00 991-045870-001 991-041146-001 991-041087-001 PART NUMBER MEMORYMOOG REF DES (OTY) U12 U14 U15 U15 U17 U17 U18 U18 U19 **EF** 01 010 010 011 U22 U23 U25 U25 U26 U27 U28 008066666666 U21

	MEMORYMOOG	DEMUX BOARD	PARTS LIST
REF DES (OTY)	PART NUMBER	DESCRIPTION	TYPE/USE
(36) (36) (32) (2)	906-045188-008 906-045188-008 906-045188-014 906-045188-016 906-045188-016	SOCKET, IC DIP .3" CNTRS. SOCKET, IC DIP .3" CNTRS. SOCKET, IC DIP .3" CNTRS. SOCKET, IC DIP .3" CNTRS.	8 PIN 14 PIN 16 PIN 20 PIN
P511 P512 P513 P514	-040299 -0402999 -0402999 -0402999	CADER, .1. CADER, .1. CADER, .1. CADER, .1.	Id
P5158 P5156 P5155 P5155 P5156 P516 P519 P519 P520 P520 P521	040299- 040299- 040299- 040299- 040299- 040299- 040299- 040299- 040299- 040299- 040299- 040299-	HEADER, J. CUTRS. HEADER, J. CUTRS.	114 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
u1 u2 u3 u4 u5 u10-u17 u18-u49 u51 u51 u51 u52 u53 u53 u53	991-043559-001 991-045865-001 991-045366-001 991-042793-001 991-042793-001 991-045305-001 991-045305-001 991-045562-001 991-0455862-001 991-0445862-001 991-0445882-001 991-0445882-001	IC, LSTTL OCTAL D F/F IC, LSTTL HEX D F/F IC, INTERFACE 12 BIT DAC IC, OP AMP IC, OP AMP IC, OP AMP IC, DUAL VOLTAGE COMPARATOR IC, TTL HEX BUFFER/DRIVER IC, TTL HEX BUFFER/DRIVER IC, TTL HEX BUFFER/DRIVER IC, LSTTL HEX D FLIP/FLOP IC, LSTTL HEX D FLIP/FLOP IC, CMOS HEX D FLIP/FLOP IC, CMOS HEX D FLIP/FLOP IC, DUAL OP AMP	74LS378 74LS377 6012 74L LF351 (TLO71) LM393 7417 7417 7417 7417 74LS378 74LS378 74LS378 74LS378 74LS378 74LS378 74LS378 74LS378 74LS378 74LS378 74LS378
01-012 013 014 014 CR1 CR2 CR3 CR3	991-041052-002 991-041051-002 991-045872-001 919-041078-002 919-041075-001 919-041075-001 919-041075-001	TRANSISTOR, PNP SMALL SIG TRANSISTOR, NPN SMALL SIG TRANSISTOR, PNP MED POWER DIODE, ZENER 6.2V/250MW DIODE, SIGNAL DIODE, SIGNAL DIODE, ZENER 8.2V/500MW	2N3906 2N3904 TN2905 1N823 1N8148 1N4148 1N5237A
C1 C2 C3 C3 C4 C5 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	947-045183-104 947-045183-104 947-045183-104 947-045008-101 947-045008-101 945-04465-003 945-041978-103 945-04165-003 947-045183-104 947-045183-104	CAPACITOR, MONOLITHIC CAPACITOR, MONOLITHIC CAPACITOR, MONOLITHIC CAPACITOR, MONOLITHIC CAPACITOR, MONOLITHIC CAPACITOR, ALUMINUM ELECT CAPACITOR, MONOLITHIC CAPACITOR, MONOLITHIC CAPACITOR, MONOLITHIC CAPACITOR, MONOLITHIC	.1 UFD .1 UFD .1 UFD 100 PFD .1 UFD 100 PFD 10 UFD/25V .01 UFD .1 UFD .1 UFD .1 UFD .1 UFD .1 UFD
R4 R8 R10	925-042389-003 225-042389-002 5-042389-006	POT, TRIM CERMET Pot, Trim Cermet Pot, Trim Cermet	IK +10V ADJ 10K FULL SCALE 100K ZERO ADJ

Page 57

· +

K OSC 1 RANGE OSC 1 H1 OSC 1 H1 OSC 1 H1 OSC 2 SCALE OSC 2 H1 OSC 2 H1 OSC 2 H1 OSC 3 NANGE OSC 3 OFFSET VCA OFFSET VCA OFFSET EMPHASIS AMT VCF RANGE UF UFD/6.3V UFD/50V UPD UPD/50V UPD UPD UPD UPD UFD/25V PFD UFD/25V UFD 040 040 040 UFD UPD UFD UFD TYPE/USE UFD PFD **114148** 1001 1001 1001 1001 100 100 100 100 .1 0 2220 101 .01 .01 .01 .01 .01 .033 .01 .01 .027 .027 .027 .027 00 CERAMIC TUBULAR CERAMIC TUBULAR CERAMIC TUBULAR CERAMIC TUBULAR POLVESTER BOX POLVESTER BOX CERAMIC TUBULAR CERAMIC TUBULAR CERAMIC TUBULAR CERAMIC TUBULAR CERAMIC TUBULAR POLYESTER BOX MONOLITHIC POLYESTER BOX POLYESTER BOX CERAMIC TUBULAR CERAMIC TUBULAR ALUMINUM ELECT. CERANIC TUBULAR CERANIC TUBULAR CERANIC TUBULAR CERANIC TUBULAR CERANIC TUBULAR CERANIC TUBULAR ALUMINUM ELECT. CERAMIC TUBULAR CERAMIC TUBULAR POLYESTER ALUMINUM ELECT. POLYESTER BOX CERAMIC TUBULAR ALUMINUM ELECT. CERAMIC TUBULAR ALUMINUM ELECT TURN TURN TURN 20 TURN TURN 20 20 20 CERMET CERMET CERMET CARBON CERMET CERMET CARBON CERMET CARBON CARBON CARBON CARBON CARBON DIODE, SIGNAL CAPACITOR, DESCRIPTION CAPACITOR, CAPACITOR, CAPACITOR, CAPACITOR, CAPACITOR, CAPACITOR, I CAPACITOR, CAPACITOR, C CAPACITOR, CAPACI TOR, CAPACITOR, CAPACITOR, CAPACITOR, CAPACITOR, POT POT POT POT POT POT POT POT POT POT, 947-045011-103 947-045008-102 947-045011-103 947-045011-103 946-04197811-103 946-04197811-103 947-045011-103 947-045011-103 947-045011-102 947-045008-221 947-045008-221 947-045011-103 947-045011-103 947-045011-103 947-045011-103 947-045011-103 947-045011-103 947-045011-103 947-045011-103 946-041978-102 946-041978-103 946-040197-226 947-045011-103 947-045008-102 947-045008-102 947-045008-101 945-044465-003 947-045011-100 925-040378-007 925-040275-004 925-040378-001 925-040378-007 925-040275-004 925-040378-001 919-041075-001 925-040275-004 925-040275-004 925-042389-002 946-041978-273 945-044465-003 925-040275-004 925-040378-001 925-040275-004 925-040275-004 925-040378-007 925-040275-004 PART NUMBER REF DES C26 C27 C28-C31 C32-C35 (VTV) RI 06 RI 40 RI 51 RI 53 RI 64 RI 64 CR1 C23 C24 C25 C25 C25 C36 C37 C37 R2 R12 R42 R43 R43 R43 R43 R43 R43 R42 R43 R42 R78 R78 R78 LF351 (TL071) LF353 (TL072) (TL072) PARTS LIST TYPE/USE CEM3360 CEM3340 4558 40168 CEM3340 4558 14 PIN 14 PIN 16 PIN CEM3340 CEM3360 IT122 2N3392 IT122 2N3906 2N3906 2N3906 IT122 2N3904 2N3904 NID NID NID 2N3906 40168 4558 40168 LF353 3080A 10168 3080A 4558 4558 m **** SMALL SIG. SMALL SIG. DUAL DIALL SIG. DUAL DIAL SIG. SMALL SIG. SMALL SIG. SMALL SIG. DUAL PAIR .3" CTRS. .3" CTRS. .3" CTRS. OPER. TRANSCOND. AMP OPER. TRANSCOND. AMP VOLTAGE REGULATOR -5V DUAL OF AMP CMOS QUAD SWITCH CMOS QUAD SWITCH VC OSCILLATOR DUAL OF AMP DUAL OP AMP CHOS QUAD SWITCH VC OSCILLATOR CTRS. CTRS. CTRS. CTRS. CTRS. VC AMPLIFIER OP AMP DUAL BIFET OP AMP DUAL BIFET OP AMP CMOS QUAD SWITCH QUAD SWITCH OSCILLATOR BIFET OP AMP ----NAN 410 DUAL OP AMP OP AMP TRANSISTOR, F TRANSISTOR, N TRANSISTOR, N TRANSISTOR, N TRANSISTOR, N TRANSISTOR, N TRANSISTOR, N SOCKET, IC D SOCKET, IC D SOCKET, IC D CIS CIS CIS CIS CIS TRANSISTOR, TRANSISTOR, TRANSISTOR, DESCRIPTION VOICE CARD DUAL HEADER, O HEADER, O HEADER, O HEADER, O HEADER, O CMOS DUAL 2 IC. IC, ບໍ່ບໍ່ Ľ, ບ ບ IC, ĽC, IC, IC, IC, 991-041052-002 991-041051-002 991-041051-002 991-045871-001 991-045871-001 991-045871-001 991-041052-002 991-041052-002 910-040299-004 910-040299-002 910-040299-002 910-040299-004 991-041087-001 991-045870-001 991-045869-001 991-041146-001 991-041087-001 991-041869-001 991-04186-001 991-041087-001 991-042793-001 991-042908-001 991-042908-001 991-041146-001 991-041087-001 991-041146-001 906-045188-008 906-045188-014 906-045188-016 910-040299-003 991-042908-001 991-041089-004 991-041089-004 991-044316-101 991-045869-001 991-041146-001 PART NUMBER MEMORYMOOG DES U1 U2 U3 U4 U4 U5 U5 U1 U1 U12 U12 U13 U13 U13 U13 U13 U13 01 02 03 04 011 011 012 013 014 (YTO) (10) REF P14 P15 P16 66 P13 U20 U21 U22 U23

Page 58

100K

. 1 8

01P SIP

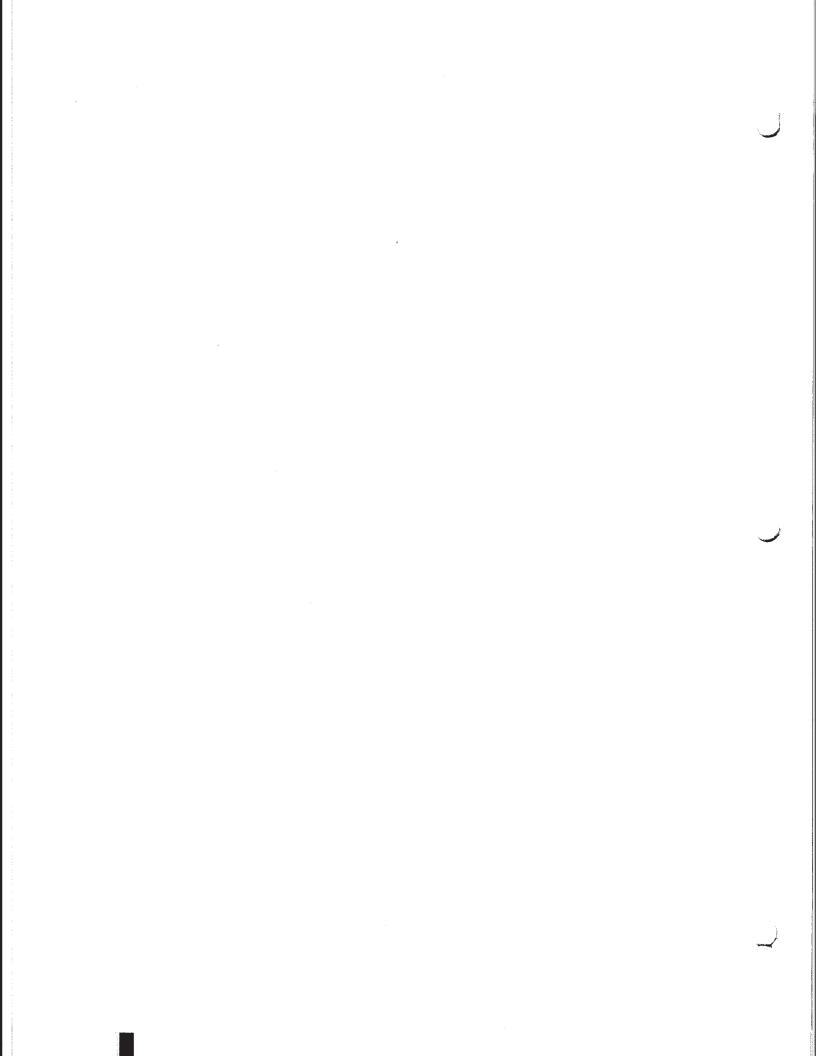
NETWORK, RESISTOR NETWORK, RESISTOR

949-045875-001 949-040207-001

N2N

							AMT	NCF 3								
		10	220	220		IOK GLIDE IOK BEND ANT IOK MOD ANT IOK FT. PED 1	PED.	VOICE MOD	PARTS LIST TYPE/USE	#4 X 9/32" #6B X 3/8" #6	74LS378 7447 Man6610	LT1601 MPSU55 MPSU55	.1 UFD			
		CAPACITOR, ALUMINUM ELECT. CAPACITOR, ALUMINUM ELECT. CAPACITOR, CERANIC THINILL	ALUMINUM CERAMIC ALUMINUM CERAMIC	CAPACITOR, ALORIANUM ELECT. CAPACITOR, CERAMIC TUBULAR CAPACITOR, CERAMIC TUBULAR CAPACITOR, ALUMINUM ELECT. CAPACITOR, CERAMIC TUBULAR CAPACITOR, POLYESTER BOX	DOT BRANC	ROTARY PC MTG. ROTARY PC MTG. ROTARY PC MTG.		POT, ROTARY PC MTG. LINEAR POT, ROTARY PC MTG. LINEAR	DISPLAY BOARD Description	WASHER, FLAT FIBRE Screw, Self Tapping Nut, Tinnerman "U" Type Header (Is)	L HEX D FLIP/FLOP BCD 7 SEG DECODER 7 SEGMENT, 2 DIGIT 8 CHARACTEP 2 DIGIT	DR. PNP 60V/2A	CAPACITOR, CERAMIC TUBULAR			
	945-044466 000			947-045183-104 947-045183-104 945-040209-019 947-045183-104 946-041978-472					MEMORYMOOG D PART NUMBER D	904-041406-009 W 816-040039-006 S 902-042525-001 N 910-040299-001 H	991-043559-001 10 991-041097-001 10 939-042633-002 10 939-045873-001 01		94/-045183-104 CA			
	C1	C2 C3-C16 C17	C18 C19 C20-C22 C23	C24 C25 C27 C27 C28 C28	R61	R6 2 R6 3 R6 5	R66 R67 R68	R6 9	REF DES (OTY)	5555	U U2 U4	5 55	5			
	PARTS LIST		14 PIN 16 PIN 20 PIN	3 PIN 7 PIN 8 PIN		SWITCH		s = s ≪ @ (2	* * * ε ε Νύας Γ	5 8 8 5 8 5 6 8 8 5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	74LS273 2074	2074 74LS377 74LS377	74L5377 45038 74L5378 74L5378	/8006 78006 7417 LM393	2N3906
	LEFT SIDE CONTROL BOARD	DESCRIPTION	SOCKET, IC DIP .3" CNTRS. SOCKET, IC DIP .3" CNTRS. SOCKET, IC DIP .3" CNTRS.	HEADER, CIS RT ANGLE HEADER, CIS RT ANGLE HEADER, CIS RT ANGLE	"L" BRACKET, BOTTOM LSC "L" BRACKET, TOP LSC	SPRING, COMPRESSION BUTTON, DARK CEAN		BUTTON, SWITCH LIGHT GREY BUTTON, SWITCH LIGHT GREY BUTTON, SWITCH LIGHT CREY	SWITCH LIGHT SWITCH LIGHT SWITCH LIGHT SWITCH LIGHT SWITCH LIGHT			LSTTL OCTAL D F/F TRANSISTOR ARRAY		LSTTL OCTAL D F/F CMOS: HEX 3 STATE BUFF LSTTL HEX D F/F LSTTL HEX D F/F UNS 8 CHANNEL MUX	REG +6 VOLT REG +6 VOLT HEX BUFFER COMPARATOR	TRANSISTOR, PNP SMALI, SIG. 2
	MEMORYMOOG	S PART NUMBER	906-045188-014 906-045188-016 906-045188-016	910-042392-003 910-042392-007 910-042392-008	967-045830-001 967-045830-003	975-045466-001 964-044082-001	960-045861-001 960-045861-002 964-044082-112	964-044082-113 964-044082-114	964-044082-115 964-044082-105 964-044082-108 964-044082-118 964-044082-111 964-044082-002	964-044082-104 964-044082-107 964-044082-110 964-044082-101	964-044082-102 964-044082-106 964-044082-109 964-044082-002	991-045950-001 991-045876-001	991-045865-001 991-045865-001 991-045865-001	991-045865-001 991-045866-001 991-041090-001 991-041020-001 991-041112-004	991-041112-004 991-041112-004 991-045305-001 991-042388-001	991-041052-002
e	59	REF DES (OTY)	(1) (8) (4)	[]]		(48)	(48) (48) Sw33	SW34 SW35	SW36 SW37 SW38 SW39 SW39 SW39	58481 58482 58443 58443 5845	SW46 SW47 SW48	01 02 01				01-018

.


RED

939~045874-001 LED, HIGH BRIGHTNESS

Ĺ

(53)

			1 1 7 1															
U	PARTS LIST	TYPE/USE	#8 X 7/16" Switch	* 1 * 0 *	RED	OR LM393	PARTS LIST	TYPE/USE	IOK MODULATION IOK PITCH BEND PITCH WHEEL PITCH WHEEL MOD & BEND MOD & BEND	PARTS LIST	TYPE/USE	8 PIN 5 PIN		4558	25K 10K	XLR TYPE	INSULATED	INSULATED
	OCTAVE TRANSPOSE BOARD	DESCRIPTION	SWITCH, CONTACT SPRING SWITCH, CONTACT BUTTON SPACER SPRING, COMPRESSION	BUTTON, LIGHT GRAY BUTTON, LIGHT GRAY	LED, HIGH BRIGHTNESS LED, HIGH BRIGHTNESS	IC, DUAL VOLTAGE COMPARATOR	LEFT HAND CONTROLLER	DESCRIPTION	POT, ROTARY LINEAR POT, ROTARY LINEAR DETENT, TEFLON DETENT, SPRING BRACKET, POT L.H. COMTROL WHEEL, LEFT HAND GRAY	JACK BOARD	DESCRIPTION	BEADER, CIS .1" CNTRS. HEADER, CIS .1" CNTRS.	JACK, .250" 2 CONDUCTOR N/C JACK, .250" 3 CONDUCTOR N/C JACK, .250" 3 CONDUCTOR N/C JACK, .250" 2 CONDUCTOR JACK, .250" 2 CONDUCTOR JACK, .250" 2 CONDUCTOR	IC, DUAL OP AMP	POT, TRIM CERMET POT, TRIM CERMET	JACK, 3 PIN MALE PANEL MTG JACK, PHONE MONO 1/4 JACK, PHONE MONO 1/4 JACK, PHONE MONO 1/4	STEREO 1/4	PHONE MONO
	MEMORYMOOG	PART NUMBER	960-045861-001 960-045861-002 973-041409-036 975-045466-001	964-044082-103 964-044082-101	939-045874-001 939-045874-001	991-042388-001	NEMORYMOOG	S PART NUMBER	925-040930-003 925-040930-003 962-04179-001 961-041178-001 967-041185-003 997-041597-002	MEMORYMOOG	ES PART NUMBER	910-040299-008 910-040299-005	910-045552-001 910-045552-003 910-045552-003 910-045552-001 910-045552-001 910-045552-001 910-045552-001	991-041146-001	925-042526-004 925-042526-003	910-041451-001 910-041306-001 910-041306-001 910-041306-001	910-041306-002 910-041306-002 910-041306-002 910-041306-001	910-041306-001
		REF DES (QTY)	(2) (2) (2) (2)	SW1 SW2	LED1 LED2	IJ		REF DES (OTY)	2253		REF DES (OTY)	P91	00000000000000000000000000000000000000	IU	R3 R6	53 57 85 65		J15 J16
0			8 9															
	PARTS LIST	TYPE/USE	8 PIN 14 PIN 16 PIN	NIG 8			SWITCH		40538 74LS378 40518 40518 40518 40518 7417 7417		2N3906 TN2219		.1 UFD .1 UFD .1 UFD .1 UFD .1 UFD	10 UFD/25V .1 UFD		10% 10% 10%		•
	RIGHT SIDE CONTROL BOARD	DESCRIPTION	SOCKET, IC DIP .3" CNTRS. SOCKET, IC DIP .3" CNTRS. SOCKET, IC DIP .3" CNTRS.	HEADER, CIS RT ANGLE	L BRACKET, BOTTOM RSC L BRACKET, TOP RSC		SPRING, COMPRESSION BUTTON, DARK GRAY SWITCH, CONTACT SPRING		IC, CMOS HEX TRISTATE BUFF IC, LSTTL HEX D TYPE F/F IC, CMOS 8 CHANNEL MUX IC, CMOS 8 CHANNEL MUX IC, CMOS 8 CHANNEL MUX IC, TTL HEX BUFFER/DRIVER IC, TTL OP AMP	- MON	TRANSISTOR, PNP SMALL SIG. TRANSISTOR, NPN HI CURRENT	1010		ALUMINUM CERAMIC		ROTARY PC MTG ROTARY 12 TURN ROTARY PC MTG ROTARY 12 TURN ROTARY PC MTG	POT, ROTARY PC MTG JUNEAR POT, ROTARY PC MTG AUDIO POT, ROTARY PC MTG AUDIO	
	MEMORYMOOG	PART NUMBER	906-045188-008 906-045188-014 906-045188-014	910-042392-008	967-045830-002 967-045830-004		975-045466-001 964-044082-001 960-045861-001	960-045831-002	991-045866-001 991-043559-001 991-041090-001 991-041090-001 991-041090-001 991-041090-001 991-041090-001	TOD-0/TTED-TCC	991-041052-002 991-045215-001	0 30-045874-001	947-045183-104 947-045183-104 947-045183-104 947-045183-104 947-045183-104	945-044465-003 947-045183-104		925-045880-001 925-045881-001 925-045880-001 925-045881-001 925-045880-001	925-045880-002 925-045880-002 925-045880-002	
<u>بر</u>		REF DES (QTY)	(1)	(2)			(30) (30) (30)	(06)	U1 00 00 00 00 00 00 00 00 00 00 00 00 00	5	01-04 05	108.7		C6 C7-C33			N 9 1	

