

SERVICE MANUAL

TECHNICAL NOTES

- Specifications
- Improvements and Additions
- DMX Software History
- Theory of Operation

Processor
Metronome
Cassette Interface
Sync to Tape
Voice cards
External Triggers \& Control Voltages
Power Supply and PUP ciruit
Audio Dutput

- Diagnostic Test Procedure
- DMX Connector Diagrams
- Parts List

SCHEMATICS

- Processor Board
- Switch Board
- Voice Boards

PARTS LAYOUT DIAGRAMS

- Processor Board
- Switch Board
- Voice Boards

PRINTED CIRCUIT COMPOSITE DIAGRAMS

- Processor Board
- Switch Board
- Voice Boards

ENGINEERING CHANGE DRDERS

CORRECTION NOTICE (Business Reply Letter)
Number of Sounds: 24
S Eass Drum (loud, medium: soft) 1 Crash Cymbal3 Snare Drum (loud, medium; soft)2 Tambourine (loud, soft)3 Hi -Hat (closed, accent: open)6 Tom-Toms (high to low)
1 Rim shot
6 Tom-Toms (high to low)
2 Shakers (loud, soft)
2 Ride Cymbal (louds soft)
1 Clap
Frequency Response: $10-16,000 \mathrm{~Hz}$ (varies among voices, and is dependent on tuning)
Dynamic Range: 80 dE
Maximum number of notes: 2000 events, each of which may contain up to 8 notes occuring simultaneously
Number of Sequences: 100
Number of Songs: 50
Maximum Typical Sequence Length: 6 minutes of $1 / 8 t h$ notes at 80 beats per minute
Maximum Sequence Length: 5 hours at 25 beats per minute
Tempo Range: 25-250 beats per minute
Fecording Modes: REAL-TIME: Records rhythms as buttons are pressed. Selectable Quantize Mode rounds off rhythms from $1 / 48$ note to $1 / 4$ note.
STEP: Notes and rests are programmed seperatly: one note at a time. Value of beat may be between $1 / 4$ note and $1 / 48$ note.
Inputs: Trigger (one for each voice) Control Voltage (one for each voice)
External Clock:
Sync To Tape
Footswitch: Start/Stop; Next Sequence
Dutputs: Stereo and Mono mixed outputs: direct outputs for each voice Metronome Sync To Tape External Clock
Power: 95-130, 190-260 Volts AC, $50-60 \mathrm{~Hz}$, 30 Watts
Dimensions: 18" (45.7cm) wide: $11.8^{\prime \prime}$ (30.0cm) deepg 5" (12.7cm) high Weight: 12 1bs. (5.4 kg)

Since the introduction of the DMX Programmable Digital Drum Machine in November 1981, several changes have been made. These changes are documented in the Engineering Change Orders in the back of this manual. The following is a brief explanation of the improvements and additions.

ECO \#SO1: Changing diode D3 on the processor board from 1 N4148 to 1 N4002 will prevent the battery back-up circuit from failing.

ECO \#SO2: Femoving the ground wire from the cassette "TO OUTFUT" jack: eliminates hum in the output of the DMX. Note that the cassette output now relies on the cassette for it's ground, so BOTH cassette cables mast be connected for proper operation. It is also necessary to remove the cassette cables from the DMX when not using the cassette interface. Noise can be picked up by the cables even if they are not connected to the cassette, which can cause false triggering in STEF mode.

ECO \#З04: This circuit change improves the performance of the metronome and makes the CLICK OUT signal useable as a trigger for external equipment.

ECO \#ЗOS: The voice board printed circuit artwork has been re-done to accomodate an improved pitch trim pot which is easier to adjust.

ECO \#SO6: This change to voice \#7 implements an improved "handclaps" sound.

ECO \#308: This change implements software Revision C (DMX V. 2.00). Following is a description of the software problems cured by version 2.00 (REV. C). Update kits are available from the factory to upgrade units prior to serial number E820801 to the new software.

1) Cassette interface does not work reliably
2) There is a delay between parts when playing a song
3) DMX occasionally drops it's memory

Software REV.C has new cassette routine which should solve the problem of unreliability. Cassettes made with REV.A or REV.B software will NOT work with REV.C machines, and vice-versa.

DMX software REV.C eliminates the pause between sequences while playing a song

DMX software REV.C cures this problem which is mainly asscociated with SONG EDIT, COPY, and OUT OF MEMORY modes
4) Sync to tape is not compatable between DMX and DSX
5) When syncronizing to tape, there are glitches: DMX falls behind b) When playing a song, DMX will occasionally play the wrong sequence
7) In FLAY mode, all of memory is lost if the ">" key is being held held down when the end of sequence 99 is reached
8) When entering STEF mode with QUANTIZE OFF, there is a display error - " FONG QUANT MODE"
9) Can't enter CASSETTE MODE from SONG MODE
10) If you record in STEP mode, and exit STEF mode while on the last beat of the sequence, then press LENGTH, the length of the sequence will be changed, and data may be lost

Software REV.C will make the sync-to-tape signals compatable between the two machines

Software REV.C reduces the discontinuities in sync signal DMX software REV.C cures this problem with SONG PLAY mode

DMX software REV.C cures this problem

The display has been changed to read "WRONG QUANT"

DMX software REV.C cures this problem
DMX software REV.C cures this problem

In addition to these fixes, there are some features which have been added, changed, or deleted:

1) Fressing the LENGTH button not only displays the length of the selected sequence, but also displays the amout of memory left. For example: "2 BARS-85\% LEFT". Note that the amount of memory left depends on the length of the currently selected sequence. This is because some memory is allocated for overdubbing on the selected sequence, and the amount is proportional to the length of the sequence.
2) The cassette interface software has been changed, so that tapes recorded on DMX's prior to serial number B820801 cannot be played into the newer $D M X$'s and vice versa.
3) The "Funching In" feature (page 4 of the Owner's Manual) has been deleted. Record mode can only be entered from Stop mode.
4) It is now possible to erase notes "on-the-fly" while in RECORD mode: Pressing any drum button while holding the ERASE button will remove that drum note from the sequence.
5) The error message "WRONG QUANT MODE" (see page 10 of the Owner"s Manual) has been changed to "WRONG QUANT".

To determine the software version number in a DMX, press and hold the 3, 5, and 7 buttons on the keypad. The display will show the version number of the currently installed software while the buttons are being held down.

"DMX 1.00 (C) 1981 "	First DMX software release. Should be updated to version 2.00 by implementing ECO \#308. Version 1.00 EFROMS are iabled BO, and B1.
"DMX 2.00 (C) 1982"	Released February 1982, this version incorporates the updates described in "IMPROVEMENTS \& ADDITIONS" at the front of this manual. Version 2.00 software is recognized by the labels

The DMX combines a set of voice cards and a 280 microprocessor based controller. In basic operation the 280 scans the keyboard, stores the depressions in a format relating the switch to the time at which it is played, and generates triggers for the voice cards. The voice cards are essentially independant drum synthesizers optimized for some particular drum sound.

OPERATION OF PROCESSOR

The processor hardware includes the reset circuit, the clock generator, and the memory and I/D decoding and latches.

The RESET circuit:
This simple resistor (R21), diode (D5), capacitor (C13) circuit causes the RESET* input to the 280 to be held low on power up to allow levels to stabilize before beginning processing.

The CLOCK GENERATOR:
The DMX uses a TTL crystal driver circuit (U36) to drive a 4.912 MHz precision crystal. The output is divided by two and shaped up by the "LS74 flipflop (US5) with an active pullup and risetime enhancer at its output (09) to provide an effective clock frequency of 2.456 MHz .

MEMOFiY and I/O DECODING:
The DMX controller uses a total of 16 K of memory including 8 K of read only program memory and $8 K$ of programmable memory. The program data is contained in two 2732 4Kx8 EPROMS. These chips are numbered BO and B1 and are installed in sockets 418 and $U 17$ respectively. The RAM chips in the DMX are $61162 \times \times 8$ CMOS memories screened to draw less than . 3 mA in standby mode. The "LS42 (LI) decodes bits 11,12 , and 13 of the address bus to select one of the memory chips. Bits 14 , and 15 are ignored. This places the ROM beginning at OOOOH and the RAM beginning at 2000H.

All other hardware in the DMX is I/O mapped with an $\operatorname{LS} 42$ (U7 on the Frocessor Board, and U2 and U9 on the Switch Board) decoding address bits 0 thru 6. The decoder 47 controls 8 bit latches for driving the voice card triggers (UB,9), the interrupt clock generator (U1O), and I/O of various discrete bits of data primarily concerning cassette circuitry (419,20). The $1 / 0$ decoder also directly activates the click generator (U33), and accesses a single bit latch (US5) to enable/disable the cilick input to the mixed outputs. Output decoder 42 on the Switch Board directly selects the Display Devices ($U 3,4,5,6$) which have data latches built-in. Input decoder 49 on the Switch Board is used to scan the buttons on the front panel. The output from the switches is placed on the data buss by buffers $U 7$ and 48 .

When the processor outputs to port 40 H , output decoder 47 clocks the flip-flop USS, which is configured as a one-shot. The RC network: consisting of R 62 and C 32 determines the width of the output at U33-2. The pulse width of the metronome click is set to 1 ms . The output of U33 is steped up to +10 volts via common-emitter QB (see ECO \#304). This output then goes to the CLICK OUT jack on the rear panel.

The CLICK OUT signal can be used as a programable trigger for external devices. However, it has been found that certain instruments require a longer pulse width. For instance, to trigger a Sequential Circuits Pro-Dne synthesizer, the pulse width of the CLICK OUT must be increased to about 40 mS . This can be accomplished by changing the value of C 32 from 0.1 mF to 4.7 mF . This modification will alter the sound of the metronome click, which should be taken into consideration before making the change. An alternate aproach which won't affect the sound of the click is to use an external one-shot to "stretch" the pulse before feeding it to the external device.

The metronome click is also routed to the built-in mixer via $Q 7$ and C24. 07 is toggled on or off by 435 (from output port 60 H), so that the metronome click is removed from the mixed output during PLAY MODE. The volume of the click in the mixed output is controlled via output port 50 H , bit 4 and R 46 to create the accent on the downbeat.

OPERATION OF CASSETTE INTERFACE

The cassette interface allows data stored in the unit's memory to, be preserved on audio cassette tape. The circuitry consists of an Output-to-Tape section and an Input-from-Tape section.

QUTPUT-TO-TAPE SECTION:
For each "1" which the microprocessor finds in memory and sends to the Cassette Interface Output-to-Tape section, the circuitry will generate one period of a 4800 Hz . sine wave, and for each "O" one period of a 2400 Hz . sine wave. This is accomplished as follows:

1. U34 divides the system clock in order to produce a 38.4 KHz . clock on pin 10. The differentiator consisting of C31 and R56 takes this signal and produces a narrow pulse which is applied to U32-8.
2. $433-12$ is the 38.4 KHz . clock divided by two. It is applied to 432-6.
3. CDATO is the data bit stream supplied by the microprocessor and is applied to 432-5.
4. The result of this logic is U32-10 which goes to U31-14. This signal is a pulse train with pulses occuring at a 19.2 KHz . rate if CDATO is a "O" and at 38.4 KHz . if CDATO is a "1".
5. U31 is a Johnson counter (shift register-counter) which is combined with three resistors in a simple D-to-A configuration to both divide the incoming pulse train by 8 a and produce a rough approximation of a sine wave at either a 2400 Hz. rate (CDATO $=$ " 0 ") (or a 4800 Hz . rate (CDATD = "1").
6. The signal CD2 (US1-4) informs the microprocessor that the next data bit can be transmitted on CDATO.
7. Q6 and the associated capacitors and resistors are a low pass filter which smooths the rough sine wave output. This final signal is then sent to the recorder.

The general format for data recorded on tape is:

- LEADER (6 seconds at 2400 Hz)
- SYNCHRONIZATION EYTE (0101 0101)
- VEFSIION NUMBER
- 16 BYTES OF ZERDS
- SYNCHRONIZATION BYTE (O101 0101)
- LENGTH OF TRANSMISSION TO FOLLOW
- DATA (Sequences)
- CHECKSUM
- TRAILER (2400 Hz. Tone)

INFUT-FROM-TAFE SECTION

The purpose of the Input-from-Tape section is to notify the microprocessor that a signal is being received from the recorder and to convert each period of an incoming 2400 Hz . signal into a "o" and each period of an incoming 4800 Hz . signal into a "1". This is accomplished as follows:

1. The circuitry surrounding U21-7 is a signal detector which produces a logic signal (CD1) to inform the microprocessor that a signal of sufficient level is being received from the recorder. A 4 second delay is provided by R33 and 220 , and two gates in 424 provide a Schmitt trigger to convert the delayed signal to logic levels. Transistor os resets c20 during the initialization period.
2. U21-1 is a high gain amplifier which converts the incoming audio signal into a logic signal (CDO) for use by the microprocessor.
3. The microprocessor, by interrogating CDO, can measure the the length of each incoming half-period. Depending upon the lengths it stores into memory either a "o" or a "1". Since only the positive half-period is reliable, A NON SIGNAL INVERTING CASSETTE RECORDER MUST BE USED. That is: the input and output signals of the recorder must be in phase.
4. At the end of the read process, an error message will be displayed if the checksum which is calculated while the data is being read in does not equal the checksum recorded on tape.

OPERATION OF SYNC-TO-TAPE CIRCUIT

The Sync-to-tape circuit provides the necessary hardware to allow a signal on a tape recorder to control the speed of operation of the unit. Synchronization information is communicated by a $2400 / 4800 \mathrm{~Hz}$ tone. The actual useful information is the number of times per second that the tone cinanges frequency between 2400 and 4800 Hz . The frequency CHANGES can occur anywhere between 40 Hz and 400 Hz . For examples a typical section of the detected signal may look like:

In this areas ------------->i<---------- In this areay freq $=4800 \mathrm{~Hz} \quad$ freq $=2400 \mathrm{~Hz}$

This is a section showing a CHANGE and the changes can occur anywhere from 40 times/second up to 400 times/second.

The detection circuit works as described below.

1. The input audio waveform is first clipped by U21, and then the edges are detected by 427 and U29; generating a PULSE:

AUDIO

CLIFPED

EDGE-DETECT
2. The pulse generated by positive zero-crossings of the waveform is about 6 usec. wide and the pulses are either $1 / 4800$ of a second or $1 / 2400$ of a second apart.
3. The heart of the detection circuit is an B-bit binary counter U26, which works in conjunction with two flip-flops. When a PULSE occurs, the down counter is loaded with a count of 47. This counter is counted down by a 154 KHz (6.51 usec.period) clock.
4. With the counter preset to 47 , it takes 48 clock periods to count it down to zero. Since the clocks occur every 6.51 usec: it takes 312 usec. for the counter to reach zero.
5. If the input frequency is 2400 Hz (417 usec. between FULSE's), the counter reaches zero after 312 usec. When it does, the counter is stopped until the next PULSE and a flip-flop U25, is set. This flip-flop will stay set as long as the input frequency is 2400 Hz .
6. If the input frequency is 4800 Hz (208 usec. between FULSE's), the counter never reaches zero and is continually preset by PULSE. In this case, the above mentioned flip-flop is reset and stays reset.
7. The turning on and off of this flip-flop represents a change from 2.400 Hz to 4800 Hz . A second edge detector circuit, U28, U24, and U25, produces a pulse when this change occurs and this pulse drives the CPU interrupt logic: U23.

VOICE BOARDS

The voice cards come in three basic types:

1. Normal; provides 3 variations of one sound. Variation may be either pitch or volume (see section on EXT TRIGGERS \& C.V."S).
2. Split; where the sound memory is divided into two separate sounds. The first sound has two variations (pitch or volume), while triggering both inputs to the card plays a completely seperate sound.
3. Dual slot: the cymbal voice is currently the only one of these. The combination of high bandwidth and long decay requires more memory than can be fit with the encoding circuitry onto one board. Thus one board contains all the control circuitry and the other contains all the memory. The Cymbal 1 and Cymbal 2 slots are connected by a data and control bus which is not present on any of the other slots so the cymbal boards must be plugged into only those slots.

The voice boards consist of a clock (U5), a triggerable 12-bit counter (U6), a 4096×8 EPROM for voice data storage (U7), and an 8-bit companding DAC (UB) with associated output filter (U9). Each voice has 2 trigger inputs (TRO, TR1) which are decoded by U1, 2, 3, and 4 to produce the three drum variations. When the voice card receives a trigger pulse, the counter is started, and data is clocked out of the EPROM into the DAC at a rate set by T1. The current output of the DAC is converted to a voltage via U9-1, and the following three op-amps (U9), comprise a six-pole elliptic response low-passfilter. The cutoff frequency of the filter is set above the frequency band of the sound, and is used as a smoothing filter to integrate between the discrete samples coming out of the DAC.

The output is a monophonic audio signal available pre-fader on the back panel. This signal is also mixed into the main outputs via the front panel fader.

EXTERNAL TRIGGERS:

The DMX has inputs on the rear panel for external triggers and contral voltages. The EXT. TRIG connections provide a means of triggering the drums from an external controller. A positive voltage between 1 and 5 volts will trigger the drums. These inputs will trigger the bottom row of drums (loud snare, open hi-hat, rimshot, etc.). The selection of what drums are played by the external triggers is a software function, and cannot be changed by the user. If it is desired to control the other drums, this can te accomplished by wiring a contact closure or TTL gate in parallel with the buttons on the front panel.

When using the external triggers with an audio source (triggering from the output of a microphone pre-amp or electric instrument, for instance) you may get multiple triggers. In this case, adjust the level of the trigger signal so that it only triggers on peaks, or use an envelope follower. FIG 1 shows a simple envelope follower which will improve triggering from an audio source.

FIG. 1 - ENVELOPE FOLLOWER

EXTERNAL CONTROL VOLTAGES:

The external control voltage inputs (one for each voice), can be used to control either the pitch or the volume of the vaice. All voices come from the factory strapped for control of pitch. To convert to volume control, change jumper " Y " on the voice board from position 1 to position 2. The characteristic of the pitch control is shown in FIG. 2. Note that the response is approximately 2-1/2 volts per octave, and that the pitch decreases with increasing voltage. If you want to control the pitch directly from a keyboard and have the pitch increase as you play up the keyboard, you must invert the control voltage before feeding it to the DMX.

FIG. 2
CONTROL VOLTAGE VS. PITCH

The control voltage inputs also provide a voltage source, so that it is possible to control the pitch/volume with only a potentiometer. When controlling the pitch in this manner, the lower pitch limit will be controlled by the trim pot $T 1$ on the voice board, which should be tuned to lowest pitch for maximum range at the external input. FIG. 3 shows how to hook: up a footpedal to control the external CV's.

FIG. 3 - FOOTPEDAL WIRING DIAGRAM
The value of the pot should be $50 k$ ohns for maximum range. For best results the pot should have an audio taper.

HI-HAT DECAY:
The decay of the CLOSED and ACCENT Hi-Hat may be changed by changing the value of C 3 . A useful range is about 2 mF to 10 mF . A smaller value will give a shorter decay, and a larger value will provide a longer decay time.

POWER SUPFLY \& PUP CIRCUIT

The +5 volt power for the logic circuitry is provided by one of the secondaries of the power transformer, rectifier CR1, filter capacitor C18, regulator USO, and the pass transistor on the rear panel heatsink. The +5 volt supply is adjustable via T1, although this trimmer is set at the factory and should not require adjustment unless components in the regulator circuit have been changed. Jumper 35 provides a convenient way to disconnect the power supply from the circuitry for troubleshooting.

An additional center-tapped secondary on the power transformer provides + and - 12 volts via rectifier CR2, filter capacitors C. 3 and C4, and regulators 438 and U39. These regulators are fixed voltage output, and are not adjustable. The +/- 12 volt supplies power the audio circuitry on the voice and switch boards. In addition, the +12 supply is used to charge the tattery used for memory retention.

The battery is charged at a constant rate through D1 and F 7 . Zener diode $Z 1$ prevents the charging voltage from getting too high. Fower is supplied to the CMOS RAM's through D4 when the power is turned on, and from the battery through D3 when the power is turned off. The RAMs are selected so that total current draw in standby mode is 300 micro amps or less. In normal use, the battery should last for about one month without re-charging. Charging time for a fully discharged battery is 14 hours.

The PUP (Fower UP) circuitry consisting of U29, QS, and associated components, ensures that the CMOS RAM's are maintained in standby mode whenevers the power is turned off. It also makes it impossible to accidently write to the memories after the AC power has been switched off (for instance, as the +5 volt supply decays). The signal FUPIN comes directly from the secondary of the power transformer, and is active only when $A C$ power is switched on. When power is turned off, 0.39 is charged from the +5 M supply (battery) through R73. U29-3 acts as a Schmitt trigger and is turned on, thus charging c40 though DB, and maintaining PUF* at a logic one. PUF* high inhibits the write strobe WR* and memory select lines RAMO* - RAMS* (via US), thus placing the memories in standby mode. When AC power is turned on, $C 39$ is discharged through 05, causing U29-3 to go low and discharge c40 through R74. The time constant of C4O and R74 is sufficient to allow the +5 volt supply to come up to full voltage before U29-4 goes low. This pulls FUP* low, enabling the memory select and write lines.

AUDID OUTPUT

The audio mixing and output circuitry is located on the SwitchBoard. The audio outputs of the voice cards are carried from the Frocessor Board to the volume sliders ($\mathrm{P} 1-\mathrm{F}$)) by the audio ribbon cable. The outputs of the volume controls go to two active summing amplifiers, U1. Each voice has a left and right summing resistor (R9-R26) feeding the left and right summing amps. The relative value of these resistors determines the panning location of that voice in the stereo image. The two summing amps then feed a stereo master volume control, which then goes to two buffer amps, and out to the jacks on the rear panel. The mono output is derived by the passive summing network $\mathrm{F} \leq \mathbf{S}$ and R 34 .

1. Turn on $A C$ power, and check $+5 v$. Adjust to $5 v,+/-50 \mathrm{mv}$.
2. Check 12 valt supplies. Should be $+/-600 \mathrm{mv}$.
3. Check +5 MEM. Should be $+/-1$ volt. With power off; +5MEM may vary considerably depending on charge of battery.
4. Check battery voltage with power off. At the time of final test, the battery should be fully charged (4.2v.). Disconnect battery with UNGROUNDED solder iron, insert an amp meter, and check current. Should be less than 300 micro-amps.
5. PUP TEST: Check the voltage at 429 pin 4. With the AC power on, the voltage should be zero. With the power off, the voltage should be approximately equal to the battery voltage (3.5 to 4.0 V).
B. Diagnostic Test Program

The DMX TEST EPROM is inserted in the socket for EPROM o (U 18). EFROM 1 may be in the system or not; it has no effect on the diagnostic, program.

The Diagnostic Test EPROM contains 8 subroutines that exercise and test various circuits and wiring in the DMX. When the DMX is initially turned on with a Test EPROM installed, the display reads "SELECT TEST 08". Any of the 8 tests can now be accessed by pushing a numbered button 0 -8. Pressing the STEF button will cause the DMX to list the names and numbers of the tests on the display. The DMX will then return to "SELECT TEST" mode.

NOTE: Some routines take a few seconds, to run, and the buttons are not scanned until the end of a routine or the end of a timed display, so sometimes it is necessary to keep a button depressed a few seconds before the system responds to it. The routines are as follows:

TEST O - Display test

Test o outputs a condenced ASCII set to the displays. Check to see that all display segments are working. To exit test, press Play/Stop button.

The displays are enabled by ID* and address 1 ines A2 and A.3.

```
TEST 1 - Memory Test
```

Test 1 writes to each RAM chip and reads the data back to find any bad memory chips that may exist in the system. The socket number of the memory chip is displayed after it is tested. If the memories are good the display will read "MEMORY OK" and exit test automatically. If there is an error, the socket number will be displayed in a message that reads "MEMORY 13 ERROR", for example. The DMX will "beep" and wait for the RECORD button to be pushed before continuing with the test. This gives the technician time to notate the error.

The FUP* line should be low. The RD*, WRA*, and RAM select lines: (RAMO* through RAM3*) are activated during this test.

TEST 2 - Switch Reading Test

Test 2 will display the name of each switch as it is pressed. Use this routine to test:

1. All the switches on the front panel
2. The cassette enable and memory protect switches on the rear panel
3. The external drum triggers on the rear panel. (Use a jumper connected to $+5 v$. to trigger the drums.)

NOTE: A mono phone plug installed in the SYNC IN jack shows up as a switch closure: "SYNC FROM TAFE".

NOTE: The Play/Stop button exits the test, so check it last. Signals that go active during this test are IORD*, SW6*, and CASI*. I.C.'s used are U7, UB, and U9 on the switchboard.

TEST 3 - Interrupt Test

1. Test 3 checks the interrupt generator by sounding the metronome on each interrupt. You should hear a fast tempo click.
2. Listen to the external clock out. You should hear a buzz.
3. Listening to regular audio out again, plug an oscillator into the EXTERNAL CLOCK IN jack. Vary the frequency of the oscillator. You should hear the click frequency change. The Play/Stop button exits this test.

A signal on STIM* (U1O, pin 11) latches a number that a count-down counter (U11) starts counting from if it is enabled by CLEN. The overflow can be seen on pin 14 of U11 and is used to generate the INT* signal seen on pin 12 of U23. When INT* goes low the z8o jumps to a
routine that outputs a "click:" USS, U7, USS, transistors Q8 and Q7 in the metronome circuit are all involved in this test. If this test fails, use TEST o to help isolate the problem.

TEST 4 - Drum Triggers Test

Test 4 sounds all the voice cards at once, starting with drum 3 , which corresponds to the bottom row of buttons.

1. Use the faders to single out one voice at a time and use the numbered buttons $1-3$ to select each one of the three drums on a voice card. Check all drums on all voices.
2. See that the volume and/or pitch intervals are correct.
3. Test the pitch trimmers to see that they vary the pitch.
4. Listen to each individual drum output on rear panel. Also listen to the left, right, and mono outputs.
5. Connect a jumper from $+5 v$. to the EXTERNAL C.V." s and play the selected drum. The pitch of the drum should should change when the voltage is applied.

The trigger signals (TR1 - TR16), come from latches (UB and 49) which are strobed by GENO* and GEN1*.

TEST 5 - Eattery Back-Up Test

Test 5 has two running modes: "write-record", and "test-copy". To test the battery back-up system, this test should be run two times, once in each mode, in order.

1. When test 5 is selected, the display will prompt you for the mode you want. Fress RECORD. This causes data to be written into memory. Now the display will tell you to: "TURN POWER OFF, AND WAIT 10SEC". Do this, then turn power on again. Now you are ready for part 2.
2. Select test 5 once again. This time press COPY. This causes the contents of memory to be checked. If the data survived power-down, the display will read: "BATTERY OK" and return to "SELECT TEST" mode. If there is bad data, the display will flash "BATTERY ERROF" and wait for RECORD to be pressed before exiting test.

NOTE: The Memory test leaves a HEX 55 in the memory, which is the same pattern the battery test uses. Therefore it is possible to get a "Battery Good" message even if you did not run the "Write-Record" part of this test first.

TEST 6 - Beep Test

This test uses the metronome hardware to make a beep tone. The purpose of this test is to make it posible to isolate an interrupt problem from a metronome hardware problem. This test is necessary only if test \#3 fails.

TEST 7 - Cassette Test

This test works the same way the regular cassette routine works. NOTE: Turn CASSETTE ENABLE switch ON before selecting test 7. To exit test, turn CASSETTE ENABLE off.

1. Connect audio out to amplifier or headphones.
2. Connect cassette recorder to DMX.
3. Set playback volume to $3 / 4$ of MAXIMUM.
4. Enable cassette mode with switch on rear panel.
5. Select test 7.
6. Load factory sequence tape (PLAY). You should be able to hear the cassette tone by turning up METRONOME volume.
7. Check cassette RECORD function by dumping back to cassette. Make sure that cassette record level control is set on automatic, or set to ovu.
8. Rewind cassette and playback in CHECK mode to check recording.
9. Listen to SYNC OUT while cassette routine is RECORDING. You should be able to hear the data being output.

The cassette routine used in the diagnostic program is the same one used in the regular software, and is subject to the same compatability restrictions; the DMX TEST EFROM will not work with cassette tapes produced on DMX's prior to serial number B820801.

```
TEST 8 - Sync From Tape Test
```

A cassette which has already been recorded with sync tone is required for this test. Connect the cassette recorder out to SYNC TO TAPE IN. Play the tape. When the sync tone starts, the metronome should click.

* NOTE: On tape recorders equiped with Automatic Level Control: there may be sufficient hum and noise generated in FAUSE mode, that the DMX will trigger spontaneously. Either do not use PAUSE mode, or reduce the playback: volume to the point where the DMX will not trigger.

This test routine is the same as the metronome test, except that the counter is NOT enabled (CLEN), so the INT* will not happen until a signal appears on SYNC. IN from a tape. In this case INT* goes low when the D-1atch is "preset" by CSYN (U23 pin8 and U24 pin 4). Normal software disables CLEN when a mono jack inserted in SYNC IN pulls TSYN* low. Uses U24, 25, 26, $27,28,19,23$.

CABLE \#4 - Audio Ribbon Cable from Frocessor Board to Fotboard:
Frocessor board end Fotboard end

C1	-	Metronome		A1
C 2	-	Spare	-	A2
cs	-	Ferc 2	-	AS
c4	-	Spare	-	A4
C5	-	Ferc 1	-	A5
c6	-	Spare	-	Ab
C7	-	Cymbal	-	A7
C8	-	+12 volts	-	AB
C9	-	Tom 2	-	A9
C10	-	Analog Ground	-	A10
C11	-	Tom 1	-	A11
C12	-	Analog Ground	-	A12
C13	-	Hi-Hat	-	A13
C14	-	-12 volts	-	A14
C15	-	Snare	-	A15
C16	-	Mono mix	-	A16
C17	-	Eass	-	A17
C18	-	Right mix	-	A18
C19	-	Spare	-	A19
C20		Left mix	-	A20

CABLE XFMR - Fower Transformer:
PIN CONNECTION

11	-	5 volt AC
12	-	5 volt AC
13	-	N.C. (key)
14	-	Ground (5 volt CT)
15	-	Ground (12 volt CT)
16	-	N.C.
17	-	12 volt AC
18	-	12 volt $A C$

	Processor board	end Po	Potboard end
	61 -	IORD*	- B1
	62 -	CASI*	- B2
	G3 - D	Digital Ground	- B3
	G4 - Di	Digital Ground	- E4
	G5 - D	Digital Ground	- B5
	G6 -	Spare	- B6
	G7 -	+5 volts	- E7
	68	Spare	- B8
	G9 -	+5 volts	- B9
	G10 -	Spare	- B10
	G11 -	SW6*	- B11
	G12 -	D7	- B12
	G13 -	Digital Ground	- B13
	G14 -	D6	- B14
	G15 -	ID*	- B15
	G16 -	D5	- B16
	G17 -	Spare	- E17
	G18 -	D4	- B18
	G19 -	AS	- B19
	G20 -	D3	- B20
	G21 -	A2	- B21
	G22 -	D2	- B22
	G23 -	A1	- B23
	G24 -	D1	- B24
	G25 -	AO	- B25
	G26 -	DO	- B26
CABLE \#1	- External Contr	-ol Voltage Inpu	puts:
	Processor boar		Rear Panel Molex
	D1 -	Ground	- pin 2,5,8,11
	D2 -	Key	- N.C.
	D3 -	Cymbal -	- pin 4
	D4	Perc 2	pin 1
	D5 -	Perc 1	pin 3
	D6 -	Tom 2 -	- pin 6
	D7 -	Tom 1 -	- pin 7
	D8 -	Hi-Hat -	- pin 9
	D9 -	Snare	pin 10
	D10 -	Bass -	- pin 12

CAELE \#2 - External Trigger Inputs:
Frocessor board Rear Panel Molex

E1	-	Ground	-	pin 2,5,8,11
E2	-	Key	-	N.C.
ES	-	Cymbal	-	pin 4
E4	-	Perc 2	-	pin 1
ES	-	Ferc 1	-	pin 3
E6	-	Tom 2	-	pin 6
E7	-	Tom 1	-	pin 7
E8	-	Hi-Hat	-	pin 9
E9	-	Snare	-	pin 10
E10	-	Bass	-	pin 12

CABLE \#S - Frocessor Board to Rear Panel:
FINCONNECTION

F1 -	Ground
F2 -	To Cassette In
FS -	CASIN
F4 -	MET
FS -	N.C.
F6 -	CASEN*
F7 -	PROT*
FB -	N.C.
F9 -	N.C. (key)
F10 -	+5 Volts

CABLE \#6 - Power Regulator Transistor:
PIN CONNECTION
Collector
H_{2} - N.C. (key)
H3 - Base

 Emitter

QTY	F'AF'T \#	LOCATION	DESCRIF'TION
1	315027	US 1	IC 4018 PRESET /N COUNT NSC
2	± 15029	U2:7	IC 74C42 BCD-DECODER
2	315041	U11,26	IC 40103
2	315044	U.3, 29	IC 4071 QUAD $2-I N$ OR GATE
1	316001	U12	Z80 MICROFROCESSOR MKS88ON
4	317009	U13:14,15,16	RAM 6116 2KX8 CMOS HM6116F-4
2	317010	U17,18	EFROM 27324096×8
1	401004	EAT	BATTEFY
2	478010	F'25, 26	RESISTOF FXD 1/4W 2-5\% . 5 OHM
2	478102	Fi38,42	RESISTOF FXD 1/4W 2-5\% 1K
7	478103	$\begin{aligned} & R 21,34,37,57, \\ & 62,75,77 \end{aligned}$	RESISTDR FXD 1/4W $2-5 \% 10 K$
2	478104	Fi3S:74	RESISTOR FXD 1/4W 2-5\% 100K
1	478105	R59	RESISTOR FXD 1/4W 2-5\% 1 MEG
1	478122	R68	RESISTOR FXD 1/4W 2-5\% 1. 2 K
2	478152	FSO, 46	FESISTOR FXD 1/4W 2-5\% 1.5K.
1	478204	R75	FESISTOR FXD 1/4W 2-5\% 200k
1	478220	F666	RESISTOF FXD 1/4W 2-5\% 22 OHM
3	478221	R42, 43:67	RESISTOF FXD 1/4W $2-5 \%$ 220 DHM
1	478222	R21	FESISTDF FXD $1 / 4 \mathrm{~W}$ 2-5\% 2.2 K
1	478223	R53	RESISTOR FXD $1 / 4 \mathrm{~W}$ 2-5\% 22K
2	478224	FiS2, 45	FESISTOR FXD $1 / 4 \mathrm{~W}$ 2-5\% 22OK
1	478225	R72	RESISTOR FXD $1 / 4 \mathrm{~W}$ 2-5\% 2.2 OHM
6	47835	$\begin{aligned} & \mathrm{F} 31,48,49,51, \\ & 52,76 \end{aligned}$	FESISTOF FXD 1/4W 2-5\% క.3k
1	478361	Fi7	RESISTOF FXD 1/2W 360 ロHM
1	478471	F:54	FESISTOF 470 DHM
29	478472	$\begin{aligned} & \mathrm{F} 8,9,10,11,12, \\ & 13,14,15,16, \\ & 17,18,19,20, \\ & 23,24,27,39, \\ & 40,41,47,50, \\ & 55,56,58,60, \\ & 63,64,65,69 \end{aligned}$	FEESISTOF FXD 1/4W 2-5\% 4.7K
3	478473	$R \leq 5,36,61$	RESISTOR FXD 1/4W 2-5\% 47K
2	478821	R70:71	FESISTOF FXD 1/4W 2-5\% 820 ロHM
1	475526	R28	RESISTOF FXD 1.78K $1 \% 1 / 8 W$
1	475369	F29	RESISTOR FXD 4. B7K $1 \% 1 / 8 W$
1	476012	T1	TRIMMER 375E102E CERMET
6	479003	R1, 2, 3, 4, 5, 6	RESISTOR NETWORK 4.7K SIP 1OF
6	481001	D1,5,6,7,8,	DIODE SIGNAL 1N4148
1	482015	D4	DIIDDE GERMANIUM 1NS4A
1	482016	Z 1	DIODE ZENER 1N752A
2	483006	CR1, CR2	RECTIFIER BRIDGE GI-WO2M
7	485003	$\begin{aligned} & Q 1,2,3,4,5, \\ & 07,8 \end{aligned}$	TRANSISTOR SS NPN MPSS172
2	486002	Q6,9	TRANSISTOR 55 FNP 2N3905
1	651585		DMX PROCESSOR PC BQARD 1583A/1584A
1	750156		CABLE SUB-ASSY DMX \#4
1	750157		CABLE SUB-ASSY DMX \#5

QTY	FART \#	LOCATION	DESCRIPTION
*	720067-1,2,3,4,5,6,7		VOICE BOARD FCB SUB-ASSY.
3	151025	C1,11,12	CAP ALUM ELECT $10 \mathrm{MF} / 25 \mathrm{~V}$ AXIAL
1	151032	C10	CAP ALUM ELECT 33MF 35V AXIAL
1	151034	C3	CAP ALUM ELECT 3.3MF $25 V$ AXIAL
2	153004	C5,6	CAP MYLAF FLM . 01 C280AE/A1OK
1	153007	c4	CAP MYLAR FLM . 0047 C350AF/A4K7
1	15.3008	C8	CAP MYLAR FLM . 047 C28OAE/A47K
1	157022	C9	CAP CER DISC 200PF $+1-10 \% \times 7 \mathrm{~F}$
1	157023	C7	CAP CER DISC $560 \mathrm{FF}+/-10 \% \times 7 \mathrm{R}$
1	219210	E	G-PIN PC MOUNT MOLEX 3061
1	219211	A	B-PIN PC MCUNT MOLEX 3081
1	219901	45	B-PIN IC SOCKET
5	219902	49, 1, 3, 4, 2	14-FIN IC SOCKET
1	219903	16	16-PIN IC SOCKET
1	219905	48	18-FIN IC SOCKET
1	219906	U7	24-PIN IC SOCKET
1	313024	49	IC TLOE4 EI-FET QUAD OF-AMF
1	313045	45	IC NESSS TIMER
1	315002	12	IC 4011 QUAD 2IN NAND
2	315006	U1, 3	IC 4013 DUAL TYFE D F/F
1	315023	14	IC 4001 QUAD 2IN NOF
1	315032	46	IC 4040 12-BIT COUNTER
1	315043	U8	IC AM6070 8-BIT DAC
1	\$17010	U7	IC 27324 KXB EFROM
1	476010	T1	TRIMMEF 10 K CERMET
1	478102	RS	RESISTOR FXD 1/4W 2-5\% 1K
4	478103	F1,2,4,10	RESISTOR FXD 1/4W 2-5\% 10K
2	478242	R11,16	RESISTOR FXD 1/4W 2-5\% 2.4K
1	478272	R8	RESISTOR FXD 1/4W $2-5 \%$ 2.7K.
1	478332	R5	RESISTOR FXD 1/4W 2-5\% 3.3K
1	478470	R21	RESISTOR FXD 1/4W 2-5\% 47 OHM
1	478471	R22	RESISTOR FXD 1/4W 2-5\% 470 OHM
1	478472	R6	RESISTOR FXD 1/4W 2-5\% 4.7K.
1	478562	R9	RESISTOR FXD 1/4W 2-5\% 5.6K
5	481001	D1,2,3,W, X	DIODE SIGNAL IN4148
1	485003	Q1	TRANSISTOR SS NFN MPSS172
1	651552		DMX VOICE PC 1553A-1554A
*	720067-1		VOICE PCB SUB-ASSY. KICK
1	151034	C3	CAP ALUM ELECT 3.3MF 250 AXIAL
1	153020	C2	CAP MYLAR FLM . OOS3 C280AE/A3K3
1	478470	R12	RESISTOR FXD 1/4W 2-5\% 47 OHM
2	478512	R19,20	RESISTOR FXD 1/4W $2-5 \%$ 5. 1 K
1	478622	R14	RESISTOR FXD 1/4W 2-5\% 6.2K
1	478682	R15	RESISTOR FXD 1/4W 2-5\% 6.8K.
1	478751	R17	RESISTOR FXD 1/4W 2-5\% 750 OHM
2	478912	R13, 18	RESISTOR FXD 1/4W 2-5\% 9.1K

QTY	FART \#	LOCATION	DESCRIPTION			
*	720067-2		voice fce	SUB	-Assy.	- SNARE
1	153014	C 2	CAP MYLAR	FLM	. 0022	2 C280AE/A2K2
1	478150	R12	RESISTOR F	FXD 1	1/4W 2	2-5\% 15 DHM
1	478152	R17	RESISTOR F	FXD 1	1/4W 2	2-5\% 1.5K
2	478332	R19, 20	RESISTOR F	FXD 1	1/4W 2	2-5\% 3.3K
3	478472	R7,14,15	RESISTOR F	FXD 1	1/4W 2	2-5\% 4.7K
2	478562	R13, 18	RESISTOR F	FXD 1	1/4W 2	2-5\% 5.6K
*	720067-3		VOICE PCE SUB-ASSY. HI-HAT			
1	151033	C3	CAP ALUM E	ELECT	T 6.8 M	MF $25 \cup$ AXIAL
1	153020	C2	CAP MYLAR	FLM	. 0033	3 C280AE/A3K3
1	478150	R12	RESISTOR F	FXD 1	1/4W 2	2-5\% 15 OHM
1	478152	R17	RESISTOR	FXD 1	1/4W 2	2-5\% 1.5K.
2	478332	R19,20	RESISTOR	FXD	1/4W 2	2-5\% 3.3K
3	478472	R7, 14,15	RESISTOR	FXD	1/4W 2	2-5\% 4.7K
2	478562	R13, 18	RESISTOR F	FXD 1	1/4W 2	2-5\% 5.6K
*	720067-4		VOICE PCB SUB-ASSY. TOM1			
1	151033	C3	CAP ALUM	ELECT	CT 6.8 M	MF $25 \cup$ AXIAL
1	153020	C2	CAP MYLAR	FLM	1.0033	3 C280AE/ASK3
1	478183	R12	RESISTOR	FXD 1	1/4W 2	2-5\% 18K
1	478333	R17	RESISTOR	FXD 1	1/4W 2	2-5\% 33K
2	478512	R19,20	RESISTOR	FXD 1	1/4W 2	2-5\% 5.1K
1	478622	R14	RESISTOR	FXD 1	1/4W 2	2-5\% 6.2K
1	478682	R15	RESISTOR	FXD 1	1/4W 2	2-5\% 6.8K
2	478912	R13,18	RESISTOR	FXD 1	1/4W 2	2-5\% 9.1K
*	720067-5		VOICE PCB SUB-ASSY. TOM2			
1	151033	C3	CAP ALUM	ELECT	T 6.8 M	MF $25 V$ AXIAL
1	153020	C2	CAP MYLAR	FLM	1.0033	3 C280AE/ASK3
1	478183	R12	RESISTOR	FXD 1	1/4W 2	2-5\% 18K
1	478333	R17	RESISTOR	FXD	1/4W 2	2-5\% 33K
2	478512	R19,20	RESISTOR	FXD	1/4W	2-5\% 5.1K
1	478622	R14	RESISTOR	FXD	1/4W 2	2-5\% 6.2K
1	478682	R15	RESISTOR	FXD 1	1/4W 2	2-5\% 6.8K
2	478912	R13, 18	RESISTOR	FXD 1	1/4W 2	2-5\% 9.1K
*	720067-6		VOICE PCB SUB-ASSY. PERC1			
1	153020	C 2	CAP MYLAR	FLM	1.0033	3 C280AE/A3K3
1	478300	R12	RESISTOR	FXD	1/4W 2	2-5\% 30 OHM
1	478152	R17	RESISTOR	FXD	1/4W	2-5\% 1.5K
2	478332	R19, 20	RESISTOR	FXD	1/4W 2	2-5\% 3.3K
3	. 478472	R7, 14, 15	RESISTOR	FXD	1/4W	2-5\% 4.7K
2	478562	R13,18	RESISTOR	FXD	1/4W 2	2-5\% 5.6K

QTY	FART \#	LOCATION	DESCRIPTION
*	720067-7		VOICE PCE SUB-ASSY. PERC2
1	153020	C 2	CAP MYLAR FLM . 0033 C280AE/ASK3
1	478300	R 12	RESISTOR FXD 1/4W 2-5\% 30 OHM
1	478152	R17	RESISTOR FXD 1/4W 2-5\% 1.5K
2	478332	F19,20	RESISTOR FXD 1/4W 2-5\% 3.3K
3	478472	R7,14,15	RESISTOR FXD 1/4W 2-5\% 4.7K
2	478562	R13,18	RESISTOR FXD 1/4W 2-5\% 5.6K
*	720068		VOICE FCB SUB-ASSY. \#2
3	151025	C1,11,12	CAP ALUM ELECT $10 \mathrm{MF} / 25 \mathrm{~V}$ AXIAL
1	151032	C10	CAP ALUM ELECT 33MF 35V AXIAL
1	151034	C3	CAF ALUM ELECT 3.3MF $25 V$ AXIAL
2	153004	C5,6	CAP MYLAR FLM . 01 C2BOAE/A1OK
1	153007	C4	CAP MYLAR FLM . 0047 C350AF/A4K7
1	153008	C8	CAP MYLAR FLM . 047 C280AE/A47K
1	153020	C 2	CAP MYLAR FLM . OOS3 [280AE/A3KS
1	157022	C9	CAP CER DISC 200PF +/-10\% X7F
1	157023	C7	CAP CER DISC 56OPF +/-10\% $\times 7 \mathrm{R}$
1	219210	E	G-PIN FC MOUNT MOLEX 3061
1	219211	A	8-PIN PC MOUNT MOLEX 3081
1	219901	45	8-PIN IC SOCKET
5	219902	49,1,3,4,2	14-PIN IC SOCKET
1	219905	48	18-PIN IC SOCKET
1	玉13024	49	IC TLO84 BI-FET QUAD DF-AMP
1	313045	45	IC NE555 TIMEF
1	315002	U2	IC 4011 QUAD 2IN NAND
2	315006	U1,3	IC 4013 DUAL TYFE D F/F
1	315023	U4	IC 4001 QUAD 2IN NDR
1	315043	U8	IC AM6070 8-BIT DAC
1	476010	T1	TRIMMER 1OK CERMET
1	478101	R12	RESISTOR FXD 1/4W 2-5\% 100 OHM
1	478102	R3	RESISTOR FXD 1/4W 2-5\% 1K
4	478103	R1, 2, 4, 10	RESISTOR FXD 1/4W 2-5\% 10K.
2	478242	R11,16	RESISTOR FXD 1/4W 2-5\% 2.4K
1	478272	R8	RESISTOR FXD 1/4W 2-5\% 2.7K
3	478332	R5, 19,20	RESISTOR FXD 1/4W 2-5\% 3.3K
1	478470	R21	RESISTOR FXD 1/4W 2-5\% 47 OHM
1	478471	R22	RESISTOR FXD 1/4W 2-5\% 470 OHM
5	478472	R6, 7, 14, 15, 23	RESISTOR FXD 1/4W 2-5\% 4.7K
3	478562	R9,13,18	RESISTOR FXD 1/4W 2-5\% 5.6K
1	478681	R17	RESISTOR FXD 1/4W 2-5\% 680 OHM
5	481001	D1, 2, 3, w, X	DIODE SIGNAL 1N4148
1	485003	Q1	TRANSISTOR SS NPN MPSS 172
1	651552		DMX VOICE PC 1553A-1554A

QTY	F＇AF＇T \＃	LOCATION	DESCRIPTION
＊	720069		VOICE PCE SUB－ASSY．\＃S
1	151025	C 2	CAF ALUM ELECT 10 25V AXIAL
1	153008	C1	CAF MYLAF FLM ． 047 C280AE／A47K゙
1	219209	D	S－PIN FC MOUNT MOLEX SOS1
1	219210	C	6－PIN FC MOUNT MOLEX 3061
2	219211	A，B	8－PIN FC MOUNT MOLEX SO81
2	219902	U1，2	14－PIN IC SロCKET
2	219903	US， 4	16－PIN IC SOCKET
8	219906	US－12	24－FIN IC SOCKET
1	311019	US	IC 74LS42 BCD－TO－DEC DECODER
2	315006	U1：2	IC 401S DUAL TYFE D F／F
1	315032	44	IC 4040 12－BIT COUNTER
8	317010	U5－12	EFROM 2732 4096X8
2	478103	R1， 3	RESISTOR FXD 1／4W 2－5\％10K
1	478.32	F2	FESISTOR FXD 1／4W 2－5\％S．
1	485003	01	TRANSISTOR SS NFN MPS5172
1	651559		DMX VOICE PC 1559A－1560A
＊	730104		CHASSIS MECH．SUB－ASSY．
1	219018		AC REC S－COND F＇AN MT SCRFT EAC－SO1
2	248.309		CAF 11 MM DIA ELK MATT 040－3025
10	248705		KNOB ROGAN SC－SS－L
1	281004		SCREW 6－32X3／8 PHIL FLAT ELK $\square X$
21	281018		SCREW 6－32X5／16 FHIL FAN ELK OX
2	28103		SCREW 8－32X $3 / 8$ FHIL PAN BLK $0 X$
6	281044		SCREW 6－ $32 \times 1 / 4$ PHIL PAN BLK $O X$
5	281050		SCREW 6－ $2 \times 3 / 8$ FHIL PAN BLK $0 X$
38	282009		NUT 6－玉2 SMALL PAT W／LOCKWSHR KEFS
2	282011		NUT 8－32 W／LロCドWSHR KEFS CAD
15	286001		SPACER $1 / 4 \times 1 / 4.140$ ID ER CD 2100
2	286006		SFACER $1 / 4 \times 1 / 8.140$ ID NYLON
17	286506		WASHEF \＃8 FLAT ． 172 IDX． $3750 \mathrm{DX.032} \mathrm{CD}$
1	286508		WASHER 1／4 INT LQCK：15／32 OD 1132
1	287501		WASHER $1 / 4 \times 1 / 2 \times 1 / 32 \mathrm{FIR}$ KFW／378
1	287503		WASHER ．500ODX．260IDX．071X．0．31 SH
1	289010		SOLDER LUG \＃6 SCREW CLEAR BT 1414－6
4	289058		FODT 3／4＂SQX1／4 RBR SJ－5023BLK゙
1	510211		SWITCH RK：SPST RED LENS
1	510406		SWITCH SFDT 115－230 SWFT 46256LFR
1	515004		FUSE 1／2 AMP SLD－BLD SAG 313500
1	515507		FUSE BLICK． 1 FOLE 3AG SOLDER LUG
55	606900		WIRE 22 19／34 ELK
1	711537		DSX STOP
1	711561		DMX／DSX HINGE $167 / 8 \mathrm{~L}$
1	711572		DMX／DSX AC SHIELD
1	711574		DMX FRONT PANEL
1	711576		DMX FRAME
1	811502		DMX／DSX HINGE ELACK ANODIZE
1	811579		DMX FRONT PANEL BLK TEX \＆SCREEN
1	811581		DSX STOF ELK TEX
1	811582		DMX FRAME ELK TEX \＆SCREEN

*	730107	MECH SUB-ASSY. DMX REGULATOR
1	261008	HEATSINK: DSX/DMX
2	281018	SCREW 6-32x5/16 FHIL FAN BLK $0 X$
2	281047	SCREW 6-S2X1/2 FHIL PAN BLK $0 X$
2	282009	NUT 6-ड2 SMALL FAT W/LロCKWSR KEFS
1	289010	SOLDR LUG \#G SCREW CLF ET 1414-6
1	289026	INSULATOR FOR TO-3 TRANSISTOR DEX-10S
1	289027	TRANSISTOF COVEF TO-3 C-TO-3
1	289032	MOUNTING INSULATOR Tロ-S INS-3
1	487008	TRANSISTOR FWR NFN 2N3055
1	750158-0	CABLE SUB-ASSY \#6

$*$	730108
1	211045
1	211207
6	211210
1	561020

MECH SUB-ASSY. DMX XFMF

CONN 8-CKT NAT 09-50-7081
FOLARIZING KEY MOLEX 256D 15-04-0219 CONN TERM F \#18 CFIMP 2478 08-50-0106 POWER XFMR DMX/DSX EX 1627

CABLE SUB-ASSY. DMX \#1
CONN 10 CKT NAT 09-50-7101
CONN 12 CKT R NAT W/EARS O3-06-1121
CONN PIN F 24 CRIMP 1875 02-06-1132
CONN TERM F 22 CRIMP 2578 08-50-0108
POLARIZING KEY MOLEX 2560 15-04-0219
CONN FIN F 18 CRIMP 1561 02-06-1103
WIRE 24 7/32 BLK FVC U
WIRE $247 / 32$ BRN FVC U
WIRE $247 / 32$ BFN FVC U
WIRE 247132 ORN PVC U

QTY	FART \#	LOCATION	DESCRIFTION
*	750156		CABLE SUB-ASSY. DMX \#4
1	219508		CONN RIBBON 20F STANDARD FEMALE
1	219517		CONN RIBBON 2OF' SOLDER-TO-BOAFid
9	605020		CABLE RIBBON 20-COND 28 AWG
*	750157		CABLE SUB-ASSY. DMX \#S
1	219507		CONN RIBEON 26F SOLDER-TO-BOARD
1	219509		CONN RIBEON 26F STANDAR'D FEMALE
9	605026		CABLE RIBBON 26-COND 28 AWG
*	750158		CABLE SUB-ASSY. DMX \#6
1	211036		CONN 4 CKT NAT 09-50-7041
1	211207		POLARIZING KEY MOLEX 2560 15-04-0219
3	211210		CONN TERM F 18 CFIMP 2478 08-50-0106
3	289019		CABLE TIE 4" T18F
5	608100		WIRE $2019 / 32$ ERN PVC U
5	608.300		WIRE 2019132 ORN FVC U
5	608400		WIRE $2019 / 32$ YEL PVC U
*	760047		SHIPFAELE SUB-ASSY. FINAL
4	281054		SCREW 8-32X3/4 100 QVAL FHIL BLK OX
2	281055		SCRAW 8-32X3/8 100 QVAL PHIL BLK OX
4	286511		WASHER \#8 CUP BLK OX
4	289016		FILLEF \#8 CUF WSHR NYL NW-15-8
2	711544		DMX/DSX END BELL SET WALNUT
1	730104		MECH SUE-ASSY DMX CHASSIS
1	940017		I.D. TAG DMX
1	942008		LABEL CAUTION VOLTAGE SETTING
*	770015		SHIPABLE SUB-ASSY. DMX SHIPPING
1	131005		Mag tape cassette 2 Min dmX dak ec-2
1	600011		LINE CORD 3 -COND 7.5 FT GY EUROPEAN
1	760047		SHIPABLE SUB-ASSY DMX FINAL
1	920003		BAG POLY $18 \times 242 \mathrm{MIL}$ DSX/DMX
1	921009		CARTON DMX/DSX 22X16X10 200\# FSSC
1	950012		MANUAL DMX
1	951001		WARRANTY CARD 5×7 ONE YEAR F+L

nOTES

1) ALL RESISTOES ARE I 4 W, 5%
2) ALL DIODEE ARE INAIGB
3) ALL DIODEE ARE INATAB
3 ALL UNSACIFIED GROUNDS ARE

DIGITAL.

OBERHEIM ELECTRONICS INC.

- SCHEMATIC -

DMX VOICE CARD- HI-HAT
J.R.

12-1-81

NOTES

3) ALL UNSEFIIFIED GROUNAS ARE
DIGITAL.

DIFITAL.

OBERHEIM ELECTRONICS INC.

- SCHEMATIC -

DMX VOICE CARD - PERC I
J. R .

12-1-81

1. ALL NPN ARE $2 N 5172$
2. ALL DIODES ARE IN4I48
3. $A=A N A L O G$ GROUND
4. $D=$ DIGITAL GROUND

A		12-21-81 $=$	OBERHEIM ELECTRONICS INC.
	INITIAL RELEASE		```-SCHEMATIC - LMX VOICE CARD- CYMBAL#I J.R. 12-1.81```
-1T	EEVISION	DATE	10144

OEERHEIM ELE:TA NIG: M: - FARTE LAYOUTT-

DMX PRULESLIE bunti
$1-\subset=2$

OBERHEIM ELECTRONICS INC.		
ecale:	-	omannor
P.C. COMPOSITE		
DMX PROCESSOR BOARD		

OBERHEIM ELECTRONICS INC.

	a-mous

oberheim electronics inc.

eence	ammores or	onawn
OnT 12-21-81		nevioso

PC. COMPOSITE
DMX VOICE CARD

OBERHEIM ELECTRONICS INC.

OBERHEIM ELECTRONICS, inc. ENGINEERING CHANGE ORDER		ECO No. 301
PRODUCT AFFECTED	DRAWINGS AFFECTED	
DM		
dESCRIPTION OF CHANGE		

Change IN4148 diode in battery backup circuit to $1 N 4002$ (or equiv.).

\dagger REASON FOR CHANGE
Occasionally the IN 4148 opens $\&$ then. battery backup does not work.
$f_{\text {eFFECTIVITY }}$
\square FUTURE PRODUCTION ONLY
\square RETROFIT UNITS IN PRODUCTION AND INVENTORY
\square RETROFIT UNITS IN FIELD
\square DRAWING CORRECTION ONLY; HARDWARE NOT AFFECTED
\square

REMOVE GROUND WIRE FROM "TO OUTPUT" JACK (CASSETtE INTERFACE) ON REAR PANEL.

REAR VIEW OF JACK

- NOTE: AFTER MODIFICATION, UNIT WILL HUM WHEN BOTH ADD \because CABLES TO CASSETTE ARE CONNECTED. REMOVAL OF $\}$ OWNER': EITHER OR BOTH CABLES WILL ELMINATE HUM. \int MANVILL

REASON FOR CHANGE
ELIMINATES 60 HE HUM IN OUTPUT DUE TO GROUND LOOP

EFFECTIVITY
\square FUTURE PRODUCTION ONLY
RETROFIT UNITS IN PRODUCTION AND INVENTORY
retrofit units in field
\square DRAWING CORRECTION ONLY; HARDWARE NOT AFFECTED
\square
\qquad

WRITTEN BY	DATE
$G R$	$1-13-82$
APPROVED BY	DATE
ACE	$1-14-82$

OBERHEIM ELECTRONICS, INC.

ENGINEERING CHANGE ORDER

ECO NO.
304
PAGE 2

RODUCT AFFECTED

DM

ESCRIPTION OF CHANGE

OLD CIRCUIT

DRAWINGS AFFECTED

NEV/ CIRCUIT
-] FUTURE PRODUCTION ONLY
\square retrofit units in production and inventory
$1 \square$ RETROFIt UNits in Field

ECO NO. 304 PAGE 3

PRODUCT AFFECTED
DMX

DESCRIPTION OF CHANGE

I:ZEASON FOR CHANGE
$\left.\right|_{\text {entecturim }}$
[FUTURE PRODUCTION ONLY
\triangle RETROFIT UNITS IN PRODUCTION AND INVENTORY
\triangle RETROFIT UNITS IN FIELD
\square DRAWING CORRECTION ONLY; HARDWARE NOT AFFECTED
\square \qquad

OBERHEIM ELECTRONICS, INC.
\qquad

TO IMPLEMENT IMPROVED HANDCLAPS

EFFECTIVITY
\square FUTURE PRODUCTION ONLY
\square retrofit units in production and inventory
\square RETROFIT UNITS IN FIELD
\square DRAWING CORRECTION ONLY; HARDWARE NOT AFFECTED
\square
\qquad

DRAWINGS AFFECTED
VOICE \#7 SCHEMATLC
VOICE \#7 LAYOUT
\qquad
aSCRIPTION OF CHANGE
all voles: $T 1$ was lot, is now 4.7k
R4 was lo, is now 4.7k
All vales except \#2:
$\mathrm{C2}$ wA . $0033 \mu \mathrm{~F}$, is Now $.0068 \mu \mathrm{~F}$
vole \#2:
C2 was . $0022 \mu \mathrm{~F}$, is NOW $.0047 \mu \mathrm{~F}$
\qquad
UN- AVALLABILTY OF INK TRIM POTS

DESCRIPTION OF CHANGE

Add 100 pf cap.
Pads are provided next to $I C=1$

REASON FOR CHANGE
Decrease norse sensitivity in sync to tape circuit te eliminate spurious: internists while in step mode
EFFECTIVITY
\square FUTURE PRODUCTION ONLY
\square RETROFIT UNITS IN PRODUCTION AND INVENTORY
\square RETROFIT UNITS IN FIELD
\square DRAWING CORRECTION ONLY; HARDWARE NOT AFFECTED
\square

OBERHEIM ELECTRONICS, INC.

DRAWINGS AFFECTED
VOILE SCHEMATICS: ASSY 720067-2 -6
-7
720068

JESCRIPTION OF CHANGE

1) CUT TRACE FROM ZI TO COUECIOR OF QI

PC 15538/1554B:
2) INSTALL JUMPER FROM EI TO UT PIN 24

CPICL

1. 1 1563:/.564B: 1) CUT TRACE FROM $Z 1$ TO COLECTOR OF Q1
2) INSTALL JUMPER FROM ZI TO CI t

EASON FOR CHANGE
CHANGE BASE VOLAGE ON QI FROM $+12 V 70+5 r$

FFECTIVITY

[] FUTURE PRODUCTION ONLY
XRETROFIT UNITS IN PRODUCTION AND INVENTORY
\square RETROFIT UNITS IN FIELD
\square DRAWING CORRECTION ONLY; HARDWARE NOT AFFECTED • \qquad

WRITTEN BY

